This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via $ρ$ (the density of the fluid), $u$ (the velocity of the field), and $d$ (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the $L^p$-norm ($p>2$) of the velocity $u$ cannot be controlled in terms only of $ρ^{\frac{1}{2}}u$ and $\nabla u$ here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-671] for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.
Citation: |
S. Ding
, J. Lin
, C. Wang
and H. Wen
, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012)
, 539-563.
doi: 10.3934/dcds.2012.32.539.![]() ![]() ![]() |
|
S. Ding
, C. Wang
and H. Wen
, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011)
, 357-371.
doi: 10.3934/dcdsb.2011.15.357.![]() ![]() ![]() |
|
J. Ericksen
, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962)
, 371-378.
doi: 10.1007/BF00253358.![]() ![]() ![]() |
|
P. Gennes de,
The Physics of Liquid Crystals, Oxford, 1974.
![]() |
|
P. Germain
, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011)
, 137-146.
doi: 10.1007/s00021-009-0006-1.![]() ![]() ![]() |
|
T. Huang
, C. Wang
and H. Wen
, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012)
, 2222-2265.
doi: 10.1016/j.jde.2011.07.036.![]() ![]() ![]() |
|
T. Huang
, C. Wang
and H. Wen
, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012)
, 285-311.
doi: 10.1007/s00205-011-0476-1.![]() ![]() ![]() |
|
X. Huang
and Y. Wang
, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013)
, 1363-1375.
doi: 10.1002/mma.2689.![]() ![]() ![]() |
|
F. Jiang
, S. Jiang
and D. Wang
, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013)
, 3369-3397.
doi: 10.1016/j.jfa.2013.07.026.![]() ![]() ![]() |
|
F. Leslie
, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968)
, 265-283.
doi: 10.1007/BF00251810.![]() ![]() ![]() |
|
J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1.
![]() |
|
J. Li
and Z. Liang
, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014)
, 640-671.
doi: 10.1016/j.matpur.2014.02.001.![]() ![]() ![]() |
|
L. Li, Q. Liu and X. Zhong,
Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1.
![]() |
|
F. Lin
, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989)
, 789-814.
doi: 10.1002/cpa.3160420605.![]() ![]() ![]() |
|
F. Lin
and C. Liu
, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995)
, 501-537.
doi: 10.1002/cpa.3160480503.![]() ![]() ![]() |
|
F. Lin
and C. Liu
, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996)
, 1-22.
doi: 10.3934/dcds.1996.2.1.![]() ![]() ![]() |
|
F. Lin and C. Wang,
The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008.
doi: 10.1142/9789812779533.![]() ![]() ![]() |
|
F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp.
doi: 10.1098/rsta.2013.0361.![]() ![]() ![]() |
|
J. Lin
, B. Lai
and C. Wang
, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015)
, 2952-2983.
doi: 10.1137/15M1007665.![]() ![]() ![]() |
|
P. Lions,
Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996.
![]() ![]() |
|
Q. Liu
, S. Liu
, W. Tan
and X. Zhong
, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016)
, 6521-6569.
doi: 10.1016/j.jde.2016.08.044.![]() ![]() ![]() |
|
S. Liu
and S. Wang
, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017)
, 39-62.
doi: 10.1007/s10440-016-0067-0.![]() ![]() ![]() |
|
S. Liu
and J. Zhang
, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016)
, 2631-2648.
doi: 10.3934/dcdsb.2016065.![]() ![]() ![]() |
|
S. Ma
, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013)
, 595-618.
doi: 10.1016/j.jmaa.2012.08.010.![]() ![]() ![]() |
|
T. Wang
, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017)
, 546-563.
doi: 10.1002/mma.3990.![]() ![]() ![]() |