• Previous Article
    Dynamical properties of nonautonomous functional differential equations with state-dependent delay
  • DCDS Home
  • This Issue
  • Next Article
    Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces
July  2017, 37(7): 3921-3938. doi: 10.3934/dcds.2017165

Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

College of Science, Northeast Electric Power University, Jilin 132013, China

3. 

School of Mathematics, Liaoning University, Shenyang 110036, China

* Corresponding author: S. Zheng

Received  July 2015 Revised  February 2017 Published  April 2017

This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via $ρ$ (the density of the fluid), $u$ (the velocity of the field), and $d$ (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the $L^p$-norm ($p>2$) of the velocity $u$ cannot be controlled in terms only of $ρ^{\frac{1}{2}}u$ and $\nabla u$ here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-671] for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.

Citation: Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165
References:
[1]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[2]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[3]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.  Google Scholar

[4]

P. Gennes de, The Physics of Liquid Crystals, Oxford, 1974. Google Scholar

[5]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[6]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[7]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[8]

X. Huang and Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.  doi: 10.1002/mma.2689.  Google Scholar

[9]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[10]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[11]

J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1. Google Scholar

[12]

J. Li and Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.  Google Scholar

[13]

L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1. Google Scholar

[14]

F. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[15]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[16]

F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.1996.2.1.  Google Scholar

[17]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008. doi: 10.1142/9789812779533.  Google Scholar

[18]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.  Google Scholar

[19]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[20]

P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996.  Google Scholar

[21]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.  Google Scholar

[22]

S. Liu and S. Wang, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.  doi: 10.1007/s10440-016-0067-0.  Google Scholar

[23]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.  Google Scholar

[24]

S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013), 595-618.  doi: 10.1016/j.jmaa.2012.08.010.  Google Scholar

[25]

T. Wang, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017), 546-563.  doi: 10.1002/mma.3990.  Google Scholar

show all references

References:
[1]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[2]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[3]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.  Google Scholar

[4]

P. Gennes de, The Physics of Liquid Crystals, Oxford, 1974. Google Scholar

[5]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[6]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[7]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[8]

X. Huang and Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.  doi: 10.1002/mma.2689.  Google Scholar

[9]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[10]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[11]

J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1. Google Scholar

[12]

J. Li and Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.  Google Scholar

[13]

L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1. Google Scholar

[14]

F. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[15]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[16]

F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.1996.2.1.  Google Scholar

[17]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008. doi: 10.1142/9789812779533.  Google Scholar

[18]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.  Google Scholar

[19]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[20]

P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996.  Google Scholar

[21]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.  Google Scholar

[22]

S. Liu and S. Wang, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.  doi: 10.1007/s10440-016-0067-0.  Google Scholar

[23]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.  Google Scholar

[24]

S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013), 595-618.  doi: 10.1016/j.jmaa.2012.08.010.  Google Scholar

[25]

T. Wang, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017), 546-563.  doi: 10.1002/mma.3990.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (52)
  • Cited by (5)

Other articles
by authors

[Back to Top]