This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via $ρ$ (the density of the fluid), $u$ (the velocity of the field), and $d$ (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the $L^p$-norm ($p>2$) of the velocity $u$ cannot be controlled in terms only of $ρ^{\frac{1}{2}}u$ and $\nabla u$ here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-671] for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.
Citation: |
S. Ding , J. Lin , C. Wang and H. Wen , Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012) , 539-563. doi: 10.3934/dcds.2012.32.539. | |
S. Ding , C. Wang and H. Wen , Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011) , 357-371. doi: 10.3934/dcdsb.2011.15.357. | |
J. Ericksen , Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962) , 371-378. doi: 10.1007/BF00253358. | |
P. Gennes de, The Physics of Liquid Crystals, Oxford, 1974. | |
P. Germain , Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011) , 137-146. doi: 10.1007/s00021-009-0006-1. | |
T. Huang , C. Wang and H. Wen , Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012) , 2222-2265. doi: 10.1016/j.jde.2011.07.036. | |
T. Huang , C. Wang and H. Wen , Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012) , 285-311. doi: 10.1007/s00205-011-0476-1. | |
X. Huang and Y. Wang , A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013) , 1363-1375. doi: 10.1002/mma.2689. | |
F. Jiang , S. Jiang and D. Wang , On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013) , 3369-3397. doi: 10.1016/j.jfa.2013.07.026. | |
F. Leslie , Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968) , 265-283. doi: 10.1007/BF00251810. | |
J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1. | |
J. Li and Z. Liang , On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014) , 640-671. doi: 10.1016/j.matpur.2014.02.001. | |
L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1. | |
F. Lin , Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989) , 789-814. doi: 10.1002/cpa.3160420605. | |
F. Lin and C. Liu , Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995) , 501-537. doi: 10.1002/cpa.3160480503. | |
F. Lin and C. Liu , Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996) , 1-22. doi: 10.3934/dcds.1996.2.1. | |
F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008. doi: 10.1142/9789812779533. | |
F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361. | |
J. Lin , B. Lai and C. Wang , Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015) , 2952-2983. doi: 10.1137/15M1007665. | |
P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996. | |
Q. Liu , S. Liu , W. Tan and X. Zhong , Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016) , 6521-6569. doi: 10.1016/j.jde.2016.08.044. | |
S. Liu and S. Wang , A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017) , 39-62. doi: 10.1007/s10440-016-0067-0. | |
S. Liu and J. Zhang , Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016) , 2631-2648. doi: 10.3934/dcdsb.2016065. | |
S. Ma , Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013) , 595-618. doi: 10.1016/j.jmaa.2012.08.010. | |
T. Wang , A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017) , 546-563. doi: 10.1002/mma.3990. |