In this paper, we study a class of nonlinear Schrödinger equations involving the fractional Laplacian and the nonlinearity term with critical Sobolev exponent. We assume that the potential of the equations includes a parameter $λ$. Moreover, the potential behaves like a potential well when the parameter λ is large. Using variational methods, combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter λ large, localizes near the bottom of the potential well. Moreover, if the zero set int $V^{-1}(0)$ of $V(x)$ includes more than one isolated component, then $u_\lambda (x)$ will be trapped around all the isolated components. However, in Laplacian case when $s=1$, for $\lambda$ large, the corresponding least energy solution will be trapped around only one isolated component and will become arbitrary small in other components of int $V^{-1}(0)$. This is the essential difference with the Laplacian problems since the operator $(-Δ)^{s}$ is nonlocal.
Citation: |
A. Ambrosetti
, M. Badiale
and S. Cingolani
, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997)
, 285-300.
doi: 10.1007/s002050050067.![]() ![]() ![]() |
|
D. Applebaum
, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004)
, 1336-1347.
![]() ![]() |
|
B. Barrios
, E. Colorado
, A. de Pablo
and U. Sánchez
, On some critical problems for the fractional Laplacian operator, J. Diff. Equa., 252 (2012)
, 6133-6162.
doi: 10.1016/j.jde.2012.02.023.![]() ![]() ![]() |
|
T. Bartsch
, A. Pankov
and Z. Wang
, Nonlinear Schrödinger equations with steep pontential well, Comm. Contemp. Math., 3 (2001)
, 549-569.
doi: 10.1142/S0219199701000494.![]() ![]() ![]() |
|
T. Bartsch
and Z. Wang
, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000)
, 366-384.
doi: 10.1007/PL00001511.![]() ![]() ![]() |
|
V. Benci
and G. Cerami
, Existence of positive solutions of the equation $-\triangle u+a(x)u=u^{\frac{N+2}{N-2}} \text{in}{\Bbb R}^{N}$, J. Funct. Anal., 88 (1990)
, 90-117.
doi: 10.1016/0022-1236(90)90120-A.![]() ![]() ![]() |
|
J. L. Bona
and Y. A. Li
, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997)
, 377-430.
doi: 10.1016/S0021-7824(97)89957-6.![]() ![]() ![]() |
|
A. de Bouard
and J. C. Saut
, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves, SIAM J. Math. Anal., 28 (1997)
, 1064-1085.
doi: 10.1137/S0036141096297662.![]() ![]() ![]() |
|
H. Brezis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
, S. Salsa
and L. Silvestre
, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008)
, 425-461.
doi: 10.1007/s00222-007-0086-6.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. in Part. Diff. Equa., 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507, 7pp.
doi: 10.1063/1.3701574.![]() ![]() ![]() |
|
W. Choi
, S. Kim
and K. Lee
, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014)
, 6531-6598.
doi: 10.1016/j.jfa.2014.02.029.![]() ![]() ![]() |
|
S. Dipierro
, G. Palatucci
and E. Valdinoci
, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania), 68 (2013)
, 201-216.
![]() ![]() |
|
P. Felmer
, A. Quaas
and J. Tan
, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh., 142 (2012)
, 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
|
R. L. Frank
and E. Lenzmann
, Uniqueness of non-linear ground states for fractional Laplacians $\text{in} \Bbb R$, Acta Math., 210 (2013)
, 261-318.
doi: 10.1007/s11511-013-0095-9.![]() ![]() ![]() |
|
R. L. Frank
, E. Lenzmann
and L. Silvestre
, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016)
, 1671-1726.
doi: 10.1002/cpa.21591.![]() ![]() ![]() |
|
M. Gonzalez
and J. Qing
, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6 (2013)
, 1535-1576.
doi: 10.2140/apde.2013.6.1535.![]() ![]() ![]() |
|
T. Jin
, Y. Li
and J. Xiong
, On a fractional Nirenberg problem, part Ⅰ: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014)
, 1111-1171.
doi: 10.4171/JEMS/456.![]() ![]() ![]() |
|
M. Maris
, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlin. Anal., 51 (2002)
, 1073-1085.
doi: 10.1016/S0362-546X(01)00880-X.![]() ![]() ![]() |
|
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅳ. Analysis of Operators, Academic Press, New York, 1978.
![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
Y. Sire
and E. Valdinoci
, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009)
, 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() ![]() |
|
J. Tan
, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Part. Diff. Equa., 42 (2011)
, 21-41.
doi: 10.1007/s00526-010-0378-3.![]() ![]() ![]() |
|
J. Tan
, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013)
, 837-589.
doi: 10.3934/dcds.2013.33.837.![]() ![]() ![]() |
|
J. Tan
and J. Xiong
, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011)
, 975-983.
doi: 10.3934/dcds.2011.31.975.![]() ![]() ![]() |
|
Z. Tang
, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Comm. Pure Appl. Anal., 13 (2014)
, 237-248.
doi: 10.3934/cpaa.2014.13.237.![]() ![]() ![]() |
|
M. Weinstein
, Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities, J. Diff. Equa., 69 (1987)
, 192-203.
doi: 10.1016/0022-0396(87)90117-3.![]() ![]() ![]() |
|
M. Willem,
Minimax theorems. Progr. Nonlinear Differential Equations and their Applications 24. Birkhäuser Boston, Inc. , Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
|
S. Yan
, J. Yang
and X. Yu
, Equations involving fractional Laplacian operator: Compactness and application, J. Funct. Anal., 269 (2015)
, 47-79.
doi: 10.1016/j.jfa.2015.04.012.![]() ![]() ![]() |