We study parametrised families of piecewise expanding interval mappings $T_a \colon [0,1] \to [0,1]$ with absolutely continuous invariant measures $\mu_a$ and give sufficient conditions for a point $X(a)$ to be typical with respect to $(T_a, \mu_a)$ for almost all parameters a. This is similar to a result by D.Schnellmann, but with different assumptions.
Citation: |
M. Björklund
and D. Schnellmann
, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009)
, 167-177.
doi: 10.1016/S0019-3577(09)00017-2.![]() ![]() ![]() |
|
Z. Kowalski
, Invariant measure for piecewise monotonic transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979)
, 53-57.
![]() ![]() |
|
C. Liverani
, Decay of correlations for piecewise expanding maps, J. Statist. Phys., 78 (1995)
, 1111-1129.
doi: 10.1007/BF02183704.![]() ![]() ![]() |
|
M. Rychlik
, Bounded variation and invariant measures, Studia Math., 76 (1983)
, 69-80.
![]() ![]() |
|
D. Schnellmann
, Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst., 31 (2011)
, 877-911.
doi: 10.3934/dcds.2011.31.877.![]() ![]() ![]() |
|
D. Schnellmann
, Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields, 162 (2015)
, 365-409.
doi: 10.1007/s00440-014-0575-7.![]() ![]() ![]() |
|
G. Wagner
, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979)
, 317-324.
doi: 10.1007/BF00538119.![]() ![]() ![]() |
|
S. Wong
, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978)
, 493-500.
doi: 10.1090/S0002-9947-1978-0515555-9.![]() ![]() ![]() |
An example of a mapping T for which the assumptions in Corollary 1 are satisfied for
An illustration of the action of