August  2017, 37(7): 4035-4051. doi: 10.3934/dcds.2017171

A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia, Italy

2. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

3. 

Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China

* Corresponding author

Received  March 2016 Revised  February 2017 Published  April 2017

In this paper, we study an anomalous diffusion model of Kirchhoff type driven by a nonlocal integro-differential operator. As a particular case, we are concerned with the following initial-boundary value problem involving the fractional $p$-Laplacian $\left\{ \begin{array}{*{35}{l}} {{\partial }_{t}}u+M([u]_{s, p}^{p}\text{)}(-\Delta)_{p}^{s}u=f(x, t) & \text{in }\Omega \times {{\mathbb{R}}^{+}}, {{\partial }_{t}}u=\partial u/\partial t, \\ u(x, 0)={{u}_{0}}(x) & \text{in }\Omega, \\ u=0\ & \text{in }{{\mathbb{R}}^{N}}\backslash \Omega, \\\end{array}\text{ }\ \ \right.$ where $[u]_{s, p}$ is the Gagliardo $p$-seminorm of $u$, $Ω\subset \mathbb{R}^N$ is a bounded domain with Lipschitz boundary $\partialΩ$, $1 < p < N/s$, with $0 < s < 1$, the main Kirchhoff function $M:\mathbb{R}^{ + }_{0} \to \mathbb{R}^{ + }$ is a continuous and nondecreasing function, $(-Δ)_p^s$ is the fractional $p$-Laplacian, $u_0$ is in $L^2(Ω)$ and $f∈ L^2_{\rm loc}(\mathbb{R}^{ + }_0;L^2(Ω))$. Under some appropriate conditions, the well-posedness of solutions for the problem above is studied by employing the sub-differential approach. Finally, the large-time behavior and extinction of solutions are also investigated.

Citation: Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London,, 1975. 
[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equations involving $p(x)$-Laplacian, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference.Suppl., 1 (2011), 22-31. 

[3]

G. Akagi, K. Matsuura, Nonlinear diffusion equations driven by the $p(·)$-Laplacian, Nonlinear Differential Equations Appl. NoDEA, 20 (2013), 37-64.  doi: 10.1007/s00030-012-0153-6.

[4]

F. AndreuJ. M. MazónJ. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40 (2009), 1815-1851.  doi: 10.1137/080720991.

[5]

S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math.(234), 2010 (), 2633-2645.  doi: 10.1016/j.cam.2010.01.026.

[6]

S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391.  doi: 10.1016/j.jmaa.2009.07.019.

[7]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. 

[8]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.

[9]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.

[10] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, Vol.5 North-Holland, Amsterdam, New York, 1973. 
[11]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, ICIAM 07-6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 43-56.  doi: 10.4171/056-1/3.

[12]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.

[13]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behaviour for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.

[14]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.

[15]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.  doi: 10.1016/j.jde.2006.12.002.

[16]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.  doi: 10.1016/j.jfa.2014.05.023.

[17]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[19]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.

[20]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191. 

[21]

M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations, 98 (1992), 226-240.  doi: 10.1016/0022-0396(92)90091-Z.

[22]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.

[23]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.

[24]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373-386. 

[25]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.

[29]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.

[30]

X. MingqiG. Molica BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.

[31]

M. Pérez-Llanosa and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal., 70 (2009), 1629-1640.  doi: 10.1016/j.na.2008.02.076.

[32]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.

[33]

P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203-214.  doi: 10.1006/jdeq.1998.3477.

[34]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogenous Schrodinger-Kirchhoff type equations involving the fractional $p-$Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.

[35]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs Vol. 49, American Mathematical Society, Providence, RI, 1997, xiv + 278 pp.

[37]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271-298.  doi: 10.1007/978-3-642-25361-4_15.

[38]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.

[39]

M. Q. XiangB. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional $p$-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp.  doi: 10.1098/rspa.2015.0034.

[40]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London,, 1975. 
[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equations involving $p(x)$-Laplacian, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference.Suppl., 1 (2011), 22-31. 

[3]

G. Akagi, K. Matsuura, Nonlinear diffusion equations driven by the $p(·)$-Laplacian, Nonlinear Differential Equations Appl. NoDEA, 20 (2013), 37-64.  doi: 10.1007/s00030-012-0153-6.

[4]

F. AndreuJ. M. MazónJ. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40 (2009), 1815-1851.  doi: 10.1137/080720991.

[5]

S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math.(234), 2010 (), 2633-2645.  doi: 10.1016/j.cam.2010.01.026.

[6]

S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391.  doi: 10.1016/j.jmaa.2009.07.019.

[7]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. 

[8]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.

[9]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.

[10] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, Vol.5 North-Holland, Amsterdam, New York, 1973. 
[11]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, ICIAM 07-6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 43-56.  doi: 10.4171/056-1/3.

[12]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.

[13]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behaviour for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.

[14]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.

[15]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.  doi: 10.1016/j.jde.2006.12.002.

[16]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.  doi: 10.1016/j.jfa.2014.05.023.

[17]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[19]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.

[20]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191. 

[21]

M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations, 98 (1992), 226-240.  doi: 10.1016/0022-0396(92)90091-Z.

[22]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.

[23]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.

[24]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373-386. 

[25]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.

[29]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.

[30]

X. MingqiG. Molica BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.

[31]

M. Pérez-Llanosa and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal., 70 (2009), 1629-1640.  doi: 10.1016/j.na.2008.02.076.

[32]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.

[33]

P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203-214.  doi: 10.1006/jdeq.1998.3477.

[34]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogenous Schrodinger-Kirchhoff type equations involving the fractional $p-$Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.

[35]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs Vol. 49, American Mathematical Society, Providence, RI, 1997, xiv + 278 pp.

[37]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271-298.  doi: 10.1007/978-3-642-25361-4_15.

[38]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.

[39]

M. Q. XiangB. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional $p$-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp.  doi: 10.1098/rspa.2015.0034.

[40]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.

[1]

Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036

[2]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[3]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control and Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044

[4]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[5]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[6]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[7]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[8]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[9]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021051

[10]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022025

[11]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[12]

Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114

[13]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[14]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure and Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[15]

Matthieu Alfaro, Pierre Gabriel, Otared Kavian. Confining integro-differential equations originating from evolutionary biology: Ground states and long time dynamics. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022120

[16]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[17]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[18]

Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379

[19]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[20]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (187)
  • HTML views (59)
  • Cited by (10)

Other articles
by authors

[Back to Top]