July  2017, 37(7): 4035-4051. doi: 10.3934/dcds.2017171

A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia, Italy

2. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

3. 

Department of Mathematics, Heilongjiang Institute of Technology, Harbin 150050, China

* Corresponding author

Received  March 2016 Revised  February 2017 Published  April 2017

In this paper, we study an anomalous diffusion model of Kirchhoff type driven by a nonlocal integro-differential operator. As a particular case, we are concerned with the following initial-boundary value problem involving the fractional $p$-Laplacian $\left\{ \begin{array}{*{35}{l}} {{\partial }_{t}}u+M([u]_{s, p}^{p}\text{)}(-\Delta)_{p}^{s}u=f(x, t) & \text{in }\Omega \times {{\mathbb{R}}^{+}}, {{\partial }_{t}}u=\partial u/\partial t, \\ u(x, 0)={{u}_{0}}(x) & \text{in }\Omega, \\ u=0\ & \text{in }{{\mathbb{R}}^{N}}\backslash \Omega, \\\end{array}\text{ }\ \ \right.$ where $[u]_{s, p}$ is the Gagliardo $p$-seminorm of $u$, $Ω\subset \mathbb{R}^N$ is a bounded domain with Lipschitz boundary $\partialΩ$, $1 < p < N/s$, with $0 < s < 1$, the main Kirchhoff function $M:\mathbb{R}^{ + }_{0} \to \mathbb{R}^{ + }$ is a continuous and nondecreasing function, $(-Δ)_p^s$ is the fractional $p$-Laplacian, $u_0$ is in $L^2(Ω)$ and $f∈ L^2_{\rm loc}(\mathbb{R}^{ + }_0;L^2(Ω))$. Under some appropriate conditions, the well-posedness of solutions for the problem above is studied by employing the sub-differential approach. Finally, the large-time behavior and extinction of solutions are also investigated.

Citation: Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London,, 1975.   Google Scholar
[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equations involving $p(x)$-Laplacian, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference.Suppl., 1 (2011), 22-31.   Google Scholar

[3]

G. Akagi, K. Matsuura, Nonlinear diffusion equations driven by the $p(·)$-Laplacian, Nonlinear Differential Equations Appl. NoDEA, 20 (2013), 37-64.  doi: 10.1007/s00030-012-0153-6.  Google Scholar

[4]

F. AndreuJ. M. MazónJ. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40 (2009), 1815-1851.  doi: 10.1137/080720991.  Google Scholar

[5]

S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math.(234), 2010 (), 2633-2645.  doi: 10.1016/j.cam.2010.01.026.  Google Scholar

[6]

S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391.  doi: 10.1016/j.jmaa.2009.07.019.  Google Scholar

[7]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[8]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[9]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[10] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, Vol.5 North-Holland, Amsterdam, New York, 1973.   Google Scholar
[11]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, ICIAM 07-6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 43-56.  doi: 10.4171/056-1/3.  Google Scholar

[12]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[13]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behaviour for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[14]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.  Google Scholar

[15]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.  doi: 10.1016/j.jde.2006.12.002.  Google Scholar

[16]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[17]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.  Google Scholar

[20]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191.   Google Scholar

[21]

M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations, 98 (1992), 226-240.  doi: 10.1016/0022-0396(92)90091-Z.  Google Scholar

[22]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[23]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[24]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373-386.   Google Scholar

[25]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[29]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar

[30]

X. MingqiG. Molica BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[31]

M. Pérez-Llanosa and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal., 70 (2009), 1629-1640.  doi: 10.1016/j.na.2008.02.076.  Google Scholar

[32]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[33]

P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203-214.  doi: 10.1006/jdeq.1998.3477.  Google Scholar

[34]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogenous Schrodinger-Kirchhoff type equations involving the fractional $p-$Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[35]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs Vol. 49, American Mathematical Society, Providence, RI, 1997, xiv + 278 pp.  Google Scholar

[37]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271-298.  doi: 10.1007/978-3-642-25361-4_15.  Google Scholar

[38]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[39]

M. Q. XiangB. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional $p$-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp.  doi: 10.1098/rspa.2015.0034.  Google Scholar

[40]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London,, 1975.   Google Scholar
[2]

G. Akagi and K. Matsuura, Well-posedness and large-time behaviors of solutions for a parabolic equations involving $p(x)$-Laplacian, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference.Suppl., 1 (2011), 22-31.   Google Scholar

[3]

G. Akagi, K. Matsuura, Nonlinear diffusion equations driven by the $p(·)$-Laplacian, Nonlinear Differential Equations Appl. NoDEA, 20 (2013), 37-64.  doi: 10.1007/s00030-012-0153-6.  Google Scholar

[4]

F. AndreuJ. M. MazónJ. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40 (2009), 1815-1851.  doi: 10.1137/080720991.  Google Scholar

[5]

S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math.(234), 2010 (), 2633-2645.  doi: 10.1016/j.cam.2010.01.026.  Google Scholar

[6]

S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391.  doi: 10.1016/j.jmaa.2009.07.019.  Google Scholar

[7]

D. Applebaum, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[8]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[9]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[10] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, Vol.5 North-Holland, Amsterdam, New York, 1973.   Google Scholar
[11]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, ICIAM 07-6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 43-56.  doi: 10.4171/056-1/3.  Google Scholar

[12]

L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012), 37-52.  doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[13]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behaviour for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[14]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.  Google Scholar

[15]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.  doi: 10.1016/j.jde.2006.12.002.  Google Scholar

[16]

A. Di CastroT. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[17]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.  Google Scholar

[20]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191.   Google Scholar

[21]

M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations, 98 (1992), 226-240.  doi: 10.1016/0022-0396(92)90091-Z.  Google Scholar

[22]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[23]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[24]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373-386.   Google Scholar

[25]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[29]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar

[30]

X. MingqiG. Molica BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[31]

M. Pérez-Llanosa and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal., 70 (2009), 1629-1640.  doi: 10.1016/j.na.2008.02.076.  Google Scholar

[32]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[33]

P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203-214.  doi: 10.1006/jdeq.1998.3477.  Google Scholar

[34]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogenous Schrodinger-Kirchhoff type equations involving the fractional $p-$Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[35]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs Vol. 49, American Mathematical Society, Providence, RI, 1997, xiv + 278 pp.  Google Scholar

[37]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271-298.  doi: 10.1007/978-3-642-25361-4_15.  Google Scholar

[38]

M. Q. XiangB. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[39]

M. Q. XiangB. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional $p$-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp.  doi: 10.1098/rspa.2015.0034.  Google Scholar

[40]

M. Q. XiangB. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional $p$-Laplacian equations, J. Differential Equations, 260 (2016), 1392-1413.  doi: 10.1016/j.jde.2015.09.028.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[15]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[16]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (49)
  • Cited by (8)

Other articles
by authors

[Back to Top]