
-
Previous Article
Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation
- DCDS Home
- This Issue
-
Next Article
Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems
Dacorogna-Moser theorem on the Jacobian determinant equation with control of support
Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal |
The original proof of Dacorogna-Moser theorem on the prescribed Jacobian PDE, $\text{det}\, \nabla\varphi=f$ , can be modified in order to obtain control of support of the solutions from that of the initial data, while keeping optimal regularity. Briefly, under the usual conditions, a solution diffeomorphism $\varphi$ satisfying $ \text{supp}(f-1)\subset\varOmega\Longrightarrow\text{supp}(\varphi-\text{id})\subset\varOmega $ can be found and $\varphi$ is still of class $C^{r+1, α}$ if $f$ is $C^{r, α}$, the domain of $f$ being a bounded connected open $C^{r+2, α}$$ set $\varOmega\subset\mathbb{R}^{n}$ .
References:
[1] |
R. Abraham, J. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Global Analysis Pure and Applied: Series B, 2. Addison-Wesley Publishing Co. , Reading Mass. , 1983. |
[2] |
A. Avila,
On the regularization of conservative maps, Acta Math., 205 (2010), 5-18.
doi: 10.1007/s11511-010-0050-y. |
[3] |
E. Bierstone,
Differentiable functions, Bol.Soc.Brasil, 11 (1980), 139-189.
doi: 10.1007/BF02584636. |
[4] |
G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms, Progress in Nonlinear Differential Equations and their Applications, 83. Birkhäuser/Springer, 2012.
doi: 10.1007/978-0-8176-8313-9. |
[5] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Second edition. Applied Mathematical Sciences, 78. Springer, New York, 2008. |
[6] |
B. Dacorogna and J. Moser,
On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1-26.
doi: 10.1016/S0294-1449(16)30307-9. |
[7] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. |
[8] |
M. Hirsch, Differential Topology, Corrected reprint of the 1976 original edition. Graduate Texts in Mathematics 33. Springer-Verlag, New York, 1994. |
[9] |
C. Matheus, A remark on the Jacobian determinant PDE, https://matheuscmss.wordpress.com/2013/07/06/a-remark-on-the-jacobian-determinant-pde/ |
[10] |
R. Seeley,
Extension of $C^{∞}$ functions defined in a half space, Proc. Amer. Math. Soc., 15 (1964), 625-626.
doi: 10.2307/2034761. |
[11] |
F. Takens,
Homoclinic points in conservative systems, Invent. math., 18 (1972), 267-292.
doi: 10.1007/BF01389816. |
show all references
References:
[1] |
R. Abraham, J. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Global Analysis Pure and Applied: Series B, 2. Addison-Wesley Publishing Co. , Reading Mass. , 1983. |
[2] |
A. Avila,
On the regularization of conservative maps, Acta Math., 205 (2010), 5-18.
doi: 10.1007/s11511-010-0050-y. |
[3] |
E. Bierstone,
Differentiable functions, Bol.Soc.Brasil, 11 (1980), 139-189.
doi: 10.1007/BF02584636. |
[4] |
G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms, Progress in Nonlinear Differential Equations and their Applications, 83. Birkhäuser/Springer, 2012.
doi: 10.1007/978-0-8176-8313-9. |
[5] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Second edition. Applied Mathematical Sciences, 78. Springer, New York, 2008. |
[6] |
B. Dacorogna and J. Moser,
On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1-26.
doi: 10.1016/S0294-1449(16)30307-9. |
[7] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. |
[8] |
M. Hirsch, Differential Topology, Corrected reprint of the 1976 original edition. Graduate Texts in Mathematics 33. Springer-Verlag, New York, 1994. |
[9] |
C. Matheus, A remark on the Jacobian determinant PDE, https://matheuscmss.wordpress.com/2013/07/06/a-remark-on-the-jacobian-determinant-pde/ |
[10] |
R. Seeley,
Extension of $C^{∞}$ functions defined in a half space, Proc. Amer. Math. Soc., 15 (1964), 625-626.
doi: 10.2307/2034761. |
[11] |
F. Takens,
Homoclinic points in conservative systems, Invent. math., 18 (1972), 267-292.
doi: 10.1007/BF01389816. |


[1] |
Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229 |
[2] |
H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361 |
[3] |
Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205 |
[4] |
. Publisher Correction to: Probability, uncertainty and quantitative risk, volume 4. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 7-. doi: 10.1186/s41546-019-0041-7 |
[5] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[6] |
Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959 |
[7] |
Olivier Verdier, Huiyan Xue, Antonella Zanna. A classification of volume preserving generating forms in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2285-2303. doi: 10.3934/dcds.2016.36.2285 |
[8] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
[9] |
Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283 |
[10] |
Ali Hyder, Juncheng Wei. Higher order conformally invariant equations in $ {\mathbb R}^3 $ with prescribed volume. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2757-2764. doi: 10.3934/cpaa.2019123 |
[11] |
Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663 |
[12] |
Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations and Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i |
[13] |
Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689 |
[14] |
Rhudaina Z. Mohammad, Karel Švadlenka. Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 969-988. doi: 10.3934/dcdss.2015.8.969 |
[15] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[16] |
Vadim Kaloshin, Maria Saprykina. Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 611-640. doi: 10.3934/dcds.2006.15.611 |
[17] |
Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075 |
[18] |
François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139 |
[19] |
Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002 |
[20] |
Wooyeon Kim, Seonhee Lim. Notes on the values of volume entropy of graphs. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5117-5129. doi: 10.3934/dcds.2020221 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]