July  2017, 37(7): 4091-4108. doi: 10.3934/dcds.2017174

Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation

School of Mathematics and Big Data, Foshan University, Foshan, Guangdong 528000, China

* Corresponding author: Zhong Wang.

Received  December 2015 Revised  April 2016 Published  April 2017

Fund Project: This work is supported by the China National Natural Science Foundation under grant number 11571381

In this article we investigate the nonlinear stability of Hasimoto solitons, in energy space, for a fourth order Schrödinger equation (4NLS) which arises in the context of the vortex filament. The proof relies on a suitable Lyapunov functional, at the $H^2$ level, which allows us to describe the dynamics of small perturbations. This stability result is also extended to Sobolev spaces $H^m$ for all $m∈\mathbb{Z}_+$ by employing the infinite conservation laws of 4NLS.

Citation: Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174
References:
[1]

J. P. Albert, Positivity properties and stability of solitary-wave solutions of model equations for long waves, Commun. Partial Differential Equations, 17 (1992), 1-22. doi: 10.1080/03605309208820831. Google Scholar

[2]

J. P. Albert and J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 46 (1991), 1-19. doi: 10.1093/imamat/46.1-2.1. Google Scholar

[3]

J. P. AlbertJ. L. Bona and D. Henry, Sufficient conditions for instability of solitary-wave solutions of model equation for long waves, Physica D, 24 (1987), 343-366. doi: 10.1016/0167-2789(87)90084-4. Google Scholar

[4]

T. B. Benjamin, The stability of solitary waves, Proc. R. Soc. London, Ser. A, 328 (1972), 153-183. doi: 10.1098/rspa.1972.0074. Google Scholar

[5]

J. L. Bona, On the stability theory of solitary waves, Proc Roy. Soc. Lond. Ser. A, 344 (1975), 363-374. doi: 10.1098/rspa.1975.0106. Google Scholar

[6]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549-561. doi: 10.1007/BF01403504. Google Scholar

[7]

L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo., 22 (1906), 117-135 (in Italian). Google Scholar

[8]

Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part Ⅰ. A higher-order asymptotic formula for the velocity, J. Fluid Mech., 417 (2000), 1-45. doi: 10.1017/S0022112000008995. Google Scholar

[9]

L. Greenberg, An oscillation method for fourth order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal., 22 (1991), 1021-1042. doi: 10.1137/0522067. Google Scholar

[10]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅰ, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[11]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E. Google Scholar

[12]

H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477-485. doi: 10.1017/S0022112072002307. Google Scholar

[13]

S. M. Hoseini and T. R. Marchant, Solitary wave interaction for a higher-order nonlinear Schrödinger equation, IMA J. Appl. Math., 72 (2007), 206-222. doi: 10.1093/imamat/hxl034. Google Scholar

[14]

Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214 (2005), 1-35. doi: 10.1016/j.jde.2004.09.005. Google Scholar

[15]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510. doi: 10.1080/03605300701629385. Google Scholar

[16]

J. Langer and R. Perline, Poisson geometry of the filament equation, J. Nonlinear Sci., 1 (1991), 71-93. doi: 10.1007/BF01209148. Google Scholar

[17]

M. Maeda and J. Segata, Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament, Funkcial. Ekvac., 54 (2011), 1-14. doi: 10.1619/fesi.54.1. Google Scholar

[18]

J. H. Maddocks and R. L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math., 46 (1993), 867-901. doi: 10.1002/cpa.3160460604. Google Scholar

[19]

F. Natali and A. Pastor, The Fourth-order dispersive nonlinear Schrödinger equation: Orbital stability of a standing wave, SIAM J. Appl. Dyn. Syst., 14 (2015), 1326-1347. doi: 10.1137/151004884. Google Scholar

[20]

A. Neves and O. Lopes, Orbital stability of double solitons for the Benjamin-Ono equation, Comm. Math. Phys., 262 (2006), 757-791. doi: 10.1007/s00220-005-1484-5. Google Scholar

[21]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅳ: Analysis of Operators, Academic Press, New York, 1978. Google Scholar

[22]

R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dyn. Res., 18 (1996), 245-268. doi: 10.1016/0169-5983(96)82495-6. Google Scholar

[23]

J. Segata, Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation, Discrete Contin. Dyn. Syst., 27 (2010), 1093-1105. doi: 10.3934/dcds.2010.27.1093. Google Scholar

[24]

J. Segata, Orbital stability of a two parameter family of solitary waves for a fourth order nonlinear Schrödinger type equation, J. Math. Phys., 54 (2013), 061503, 6 pp. doi: 10. 1063/1. 4811522. Google Scholar

[25]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034. Google Scholar

[26]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103. Google Scholar

[27]

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69. Google Scholar

show all references

References:
[1]

J. P. Albert, Positivity properties and stability of solitary-wave solutions of model equations for long waves, Commun. Partial Differential Equations, 17 (1992), 1-22. doi: 10.1080/03605309208820831. Google Scholar

[2]

J. P. Albert and J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 46 (1991), 1-19. doi: 10.1093/imamat/46.1-2.1. Google Scholar

[3]

J. P. AlbertJ. L. Bona and D. Henry, Sufficient conditions for instability of solitary-wave solutions of model equation for long waves, Physica D, 24 (1987), 343-366. doi: 10.1016/0167-2789(87)90084-4. Google Scholar

[4]

T. B. Benjamin, The stability of solitary waves, Proc. R. Soc. London, Ser. A, 328 (1972), 153-183. doi: 10.1098/rspa.1972.0074. Google Scholar

[5]

J. L. Bona, On the stability theory of solitary waves, Proc Roy. Soc. Lond. Ser. A, 344 (1975), 363-374. doi: 10.1098/rspa.1975.0106. Google Scholar

[6]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549-561. doi: 10.1007/BF01403504. Google Scholar

[7]

L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo., 22 (1906), 117-135 (in Italian). Google Scholar

[8]

Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part Ⅰ. A higher-order asymptotic formula for the velocity, J. Fluid Mech., 417 (2000), 1-45. doi: 10.1017/S0022112000008995. Google Scholar

[9]

L. Greenberg, An oscillation method for fourth order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal., 22 (1991), 1021-1042. doi: 10.1137/0522067. Google Scholar

[10]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅰ, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[11]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E. Google Scholar

[12]

H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477-485. doi: 10.1017/S0022112072002307. Google Scholar

[13]

S. M. Hoseini and T. R. Marchant, Solitary wave interaction for a higher-order nonlinear Schrödinger equation, IMA J. Appl. Math., 72 (2007), 206-222. doi: 10.1093/imamat/hxl034. Google Scholar

[14]

Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differential Equations, 214 (2005), 1-35. doi: 10.1016/j.jde.2004.09.005. Google Scholar

[15]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Comm. Partial Differential Equations, 32 (2007), 1493-1510. doi: 10.1080/03605300701629385. Google Scholar

[16]

J. Langer and R. Perline, Poisson geometry of the filament equation, J. Nonlinear Sci., 1 (1991), 71-93. doi: 10.1007/BF01209148. Google Scholar

[17]

M. Maeda and J. Segata, Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament, Funkcial. Ekvac., 54 (2011), 1-14. doi: 10.1619/fesi.54.1. Google Scholar

[18]

J. H. Maddocks and R. L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math., 46 (1993), 867-901. doi: 10.1002/cpa.3160460604. Google Scholar

[19]

F. Natali and A. Pastor, The Fourth-order dispersive nonlinear Schrödinger equation: Orbital stability of a standing wave, SIAM J. Appl. Dyn. Syst., 14 (2015), 1326-1347. doi: 10.1137/151004884. Google Scholar

[20]

A. Neves and O. Lopes, Orbital stability of double solitons for the Benjamin-Ono equation, Comm. Math. Phys., 262 (2006), 757-791. doi: 10.1007/s00220-005-1484-5. Google Scholar

[21]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅳ: Analysis of Operators, Academic Press, New York, 1978. Google Scholar

[22]

R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dyn. Res., 18 (1996), 245-268. doi: 10.1016/0169-5983(96)82495-6. Google Scholar

[23]

J. Segata, Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation, Discrete Contin. Dyn. Syst., 27 (2010), 1093-1105. doi: 10.3934/dcds.2010.27.1093. Google Scholar

[24]

J. Segata, Orbital stability of a two parameter family of solitary waves for a fourth order nonlinear Schrödinger type equation, J. Math. Phys., 54 (2013), 061503, 6 pp. doi: 10. 1063/1. 4811522. Google Scholar

[25]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034. Google Scholar

[26]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103. Google Scholar

[27]

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69. Google Scholar

[1]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[2]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[3]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[4]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[5]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[6]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[7]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[8]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[9]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[10]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[11]

Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242

[12]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[13]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[14]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[15]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[16]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[17]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[18]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[19]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[20]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (6)
  • Cited by (1)

Other articles
by authors

[Back to Top]