We study nonlinear elliptic equations of strong $p(x)$-Laplacian type to obtain an interior Calderón-Zygmund type estimates by finding a correct regularity assumption on the variable exponent $p(x)$. Our proof is based on the maximal function technique and the appropriate localization method.
Citation: |
E. Acerbi
and G. Mingione
, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005)
, 117-148.
doi: 10.1515/crll.2005.2005.584.117.![]() ![]() ![]() |
|
T. Adamowicz
and P. Hästö
, Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. IMRN, 10 (2010)
, 1940-1965.
doi: 10.1093/imrn/rnp192.![]() ![]() ![]() |
|
T. Adamowicz
and P. Hästö
, Harnack's inequality and the strong $p(·)$-Laplacian, J. Differential Equations, 250 (2011)
, 1631-1649.
doi: 10.1016/j.jde.2010.10.006.![]() ![]() ![]() |
|
K. Astala
, T. Iwaniec
, P. Koskela
and G. Martin
, Mappings of BMO-bounded distortion, Math. Ann., 317 (2000)
, 703-726.
doi: 10.1007/PL00004420.![]() ![]() ![]() |
|
S. Byun
and J. Ok
, On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016)
, 512-545.
doi: 10.1016/j.matpur.2016.03.002.![]() ![]() ![]() |
|
S. Byun
, J. Ok
and S. Ryu
, Global gradient estimates for elliptic equations of $p(x)$-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016)
, 1-38.
doi: 10.1515/crelle-2014-0004.![]() ![]() ![]() |
|
S. Byun
and L. Wang
, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004)
, 1283-1310.
doi: 10.1002/cpa.20037.![]() ![]() ![]() |
|
L. Diening, P. Harjulehto, P. Hästö and M. Růžička,
Lebesgue and Sobolev Spaces with Variable Exponents Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
|
X. Fan
and D. Zhao
, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001)
, 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
|
T. Iwaniec
, $p$-harmonic tensors and quasiregular mappings, Ann. Math., 136 (1992)
, 589-624.
doi: 10.2307/2946602.![]() ![]() ![]() |
|
T. Iwaniec
and A. Verde
, On the operator $\mathcal{L}(f)=f\log|f|$, J. Funct. Anal., 169 (1999)
, 391-420.
doi: 10.1006/jfan.1999.3443.![]() ![]() |
|
T. Kilpeläinen
and P. Koskela
, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994)
, 899-909.
doi: 10.1016/0362-546X(94)90127-9.![]() ![]() ![]() |
|
O. Kováčik
and J. Rákosník
, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991)
, 592-618.
![]() ![]() |
|
G. M. Lieberman
, The natural generalization of the natral conditons of Ladyzenskaja and Ural'tzeva for elliptic equations, Comm. Partial Differential Equations, 16 (1991)
, 311-361.
doi: 10.1080/03605309108820761.![]() ![]() ![]() |
|
G. M. Lieberman
, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988)
, 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
|
E. M. Stein, Harmonic Analysis Princeton University Press, Princeton, NJ, 1993.
![]() ![]() |
|
C. Zhang
, L. Wang
, S. Zhou
and Y.-H. Kim
, Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains, Commun. Pure Appl. Anal., 13 (2014)
, 2559-2587.
doi: 10.3934/cpaa.2014.13.2559.![]() ![]() ![]() |
|
C. Zhang
and S. Zhou
, Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian, J. Math. Anal. Appl., 389 (2012)
, 1066-1077.
doi: 10.1016/j.jmaa.2011.12.047.![]() ![]() ![]() |