-
Previous Article
Mathematical analysis of an in vivo model of mitochondrial swelling
- DCDS Home
- This Issue
-
Next Article
Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation
Gradient estimates for the strong $p(x)$-Laplace equation
1. | Department of Mathematics, Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
3. | LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China |
We study nonlinear elliptic equations of strong $p(x)$-Laplacian type to obtain an interior Calderón-Zygmund type estimates by finding a correct regularity assumption on the variable exponent $p(x)$. Our proof is based on the maximal function technique and the appropriate localization method.
References:
[1] |
E. Acerbi and G. Mingione,
Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117-148.
doi: 10.1515/crll.2005.2005.584.117. |
[2] |
T. Adamowicz and P. Hästö,
Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. IMRN, 10 (2010), 1940-1965.
doi: 10.1093/imrn/rnp192. |
[3] |
T. Adamowicz and P. Hästö,
Harnack's inequality and the strong $p(·)$-Laplacian, J. Differential Equations, 250 (2011), 1631-1649.
doi: 10.1016/j.jde.2010.10.006. |
[4] |
K. Astala, T. Iwaniec, P. Koskela and G. Martin,
Mappings of BMO-bounded distortion, Math. Ann., 317 (2000), 703-726.
doi: 10.1007/PL00004420. |
[5] |
S. Byun and J. Ok,
On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.
doi: 10.1016/j.matpur.2016.03.002. |
[6] |
S. Byun, J. Ok and S. Ryu,
Global gradient estimates for elliptic equations of $p(x)$-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016), 1-38.
doi: 10.1515/crelle-2014-0004. |
[7] |
S. Byun and L. Wang,
Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.
doi: 10.1002/cpa.20037. |
[8] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička,
Lebesgue and Sobolev Spaces with Variable Exponents Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-18363-8. |
[9] |
X. Fan and D. Zhao,
On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[10] |
T. Iwaniec,
$p$-harmonic tensors and quasiregular mappings, Ann. Math., 136 (1992), 589-624.
doi: 10.2307/2946602. |
[11] |
T. Iwaniec and A. Verde,
On the operator $\mathcal{L}(f)=f\log|f|$, J. Funct. Anal., 169 (1999), 391-420.
doi: 10.1006/jfan.1999.3443. |
[12] |
T. Kilpeläinen and P. Koskela,
Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899-909.
doi: 10.1016/0362-546X(94)90127-9. |
[13] |
O. Kováčik and J. Rákosník,
On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.
|
[14] |
G. M. Lieberman,
The natural generalization of the natral conditons of Ladyzenskaja and Ural'tzeva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[15] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[16] |
E. M. Stein, Harmonic Analysis Princeton University Press, Princeton, NJ, 1993. |
[17] |
C. Zhang, L. Wang, S. Zhou and Y.-H. Kim,
Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains, Commun. Pure Appl. Anal., 13 (2014), 2559-2587.
doi: 10.3934/cpaa.2014.13.2559. |
[18] |
C. Zhang and S. Zhou,
Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian, J. Math. Anal. Appl., 389 (2012), 1066-1077.
doi: 10.1016/j.jmaa.2011.12.047. |
show all references
References:
[1] |
E. Acerbi and G. Mingione,
Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117-148.
doi: 10.1515/crll.2005.2005.584.117. |
[2] |
T. Adamowicz and P. Hästö,
Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. IMRN, 10 (2010), 1940-1965.
doi: 10.1093/imrn/rnp192. |
[3] |
T. Adamowicz and P. Hästö,
Harnack's inequality and the strong $p(·)$-Laplacian, J. Differential Equations, 250 (2011), 1631-1649.
doi: 10.1016/j.jde.2010.10.006. |
[4] |
K. Astala, T. Iwaniec, P. Koskela and G. Martin,
Mappings of BMO-bounded distortion, Math. Ann., 317 (2000), 703-726.
doi: 10.1007/PL00004420. |
[5] |
S. Byun and J. Ok,
On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512-545.
doi: 10.1016/j.matpur.2016.03.002. |
[6] |
S. Byun, J. Ok and S. Ryu,
Global gradient estimates for elliptic equations of $p(x)$-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016), 1-38.
doi: 10.1515/crelle-2014-0004. |
[7] |
S. Byun and L. Wang,
Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.
doi: 10.1002/cpa.20037. |
[8] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička,
Lebesgue and Sobolev Spaces with Variable Exponents Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-18363-8. |
[9] |
X. Fan and D. Zhao,
On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[10] |
T. Iwaniec,
$p$-harmonic tensors and quasiregular mappings, Ann. Math., 136 (1992), 589-624.
doi: 10.2307/2946602. |
[11] |
T. Iwaniec and A. Verde,
On the operator $\mathcal{L}(f)=f\log|f|$, J. Funct. Anal., 169 (1999), 391-420.
doi: 10.1006/jfan.1999.3443. |
[12] |
T. Kilpeläinen and P. Koskela,
Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899-909.
doi: 10.1016/0362-546X(94)90127-9. |
[13] |
O. Kováčik and J. Rákosník,
On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.
|
[14] |
G. M. Lieberman,
The natural generalization of the natral conditons of Ladyzenskaja and Ural'tzeva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[15] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[16] |
E. M. Stein, Harmonic Analysis Princeton University Press, Princeton, NJ, 1993. |
[17] |
C. Zhang, L. Wang, S. Zhou and Y.-H. Kim,
Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains, Commun. Pure Appl. Anal., 13 (2014), 2559-2587.
doi: 10.3934/cpaa.2014.13.2559. |
[18] |
C. Zhang and S. Zhou,
Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian, J. Math. Anal. Appl., 389 (2012), 1066-1077.
doi: 10.1016/j.jmaa.2011.12.047. |
[1] |
Sun-Sig Byun, Yumi Cho, Shuang Liang. Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3843-3855. doi: 10.3934/dcdsb.2020038 |
[2] |
Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155 |
[3] |
Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091 |
[4] |
Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074 |
[5] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[6] |
Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3605-3636. doi: 10.3934/cpaa.2021123 |
[7] |
Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure and Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475 |
[8] |
Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1 |
[9] |
Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure and Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044 |
[10] |
Yong Fang, Patrick Foulon, Boris Hasselblatt. Zygmund strong foliations in higher dimension. Journal of Modern Dynamics, 2010, 4 (3) : 549-569. doi: 10.3934/jmd.2010.4.549 |
[11] |
Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211 |
[12] |
Miroslav Bulíček, Annegret Glitzky, Matthias Liero. Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 697-713. doi: 10.3934/dcdss.2017035 |
[13] |
Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201 |
[14] |
Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa. Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022105 |
[15] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[16] |
Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 |
[17] |
Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems and Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026 |
[18] |
Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025 |
[19] |
Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22 |
[20] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]