August  2017, 37(7): 4131-4158. doi: 10.3934/dcds.2017176

Mathematical analysis of an in vivo model of mitochondrial swelling

1. 

Institute for Computational Biology, Helmholtz Zentrum München, Ingolstäder Landstr. 1, 85764 Neuherberg, Germany

2. 

Department of Applied Phsyics, School of Science and Engineering, Waseda University 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-855, Japan

3. 

Department of Mathematics and Statistics, University of Guelph, Guelph ON, N1G2W1, Canada

* Corresponding author: Messoud Efendiev

Received  October 2016 Revised  February 2017 Published  April 2017

Fund Project: M.O. is partly supported by the Grant-in-Aid for Scientific Research #15K13451, the Ministry of Education, Culture, Sports, Science, and Technology, Japan; H.J.E. is partly supported by the Natrural Science and Engineering Researc Council of Canada through a Discovery Grant.

We analyze the effect of Robin boundary conditions in a mathematical model for a mitochondria swelling in a living organism. This is a coupled PDE/ODE model for the dependent variables calcium ion contration and three fractions of mitochondria that are distinguished by their state of swelling activity. The model assumes that the boundary is a permeable 'membrane', through which calcium ions can both enter or leave the cell. Under biologically relevant assumptions on the data, we prove the well-posedness of solutions of the model and study the asymptotic behavior of its solutions. We augment the analysis of the model with computer simulations that illustrate the theoretically obtained results.

Citation: Messoud Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. Mathematical analysis of an in vivo model of mitochondrial swelling. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4131-4158. doi: 10.3934/dcds.2017176
References:
[1]

S. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324.  doi: 10.1137/S0036142902401311.

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North Holland, Amsterdam, The Netherlands, 1973.

[3]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, (1971), 101-179. 

[4]

M. A. EfendievM. Ôtani and H. J. Eberl, A coupled PDE/ODE model of mitochondrial swelling: Large-time behavior of homogeneous Dirichlet problem, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 1-13.  doi: 10.1166/jcsmd.2015.1070.

[5]

S. Eisenhofer, A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria, PhD Dissertation, TU Munich, 2013.

[6]

S. EisenhoferM. A. EfendievM. ÔtaniS. Schulz and H. Zischka, On a ODE-PDE coupling model of the mitochondrial swelling process, Discrete and Continuous Dynamical Syst. Ser. B, 20 (2015), 1031-1057.  doi: 10.3934/dcdsb.2015.20.1031.

[7]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.

[8]

G. KroemerL. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163. 

[9]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  doi: 10.1016/0022-0396(82)90119-X.

[10]

V. PetronilliC. ColaS. MassariR. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945. 

[11]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $\textrm{Ca}^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408. 

[12]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[13]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, J. A. Barth, 1995.

[14]

H. ZischkaN. LarochetteF. HoffmannD. HamöollerN. JägemannJ. LichtmanneggerL. JennenJ. Müller-HöckerF. RoggelM. GöttlicherA. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.  doi: 10.1021/ac800173r.

show all references

References:
[1]

S. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324.  doi: 10.1137/S0036142902401311.

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North Holland, Amsterdam, The Netherlands, 1973.

[3]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, (1971), 101-179. 

[4]

M. A. EfendievM. Ôtani and H. J. Eberl, A coupled PDE/ODE model of mitochondrial swelling: Large-time behavior of homogeneous Dirichlet problem, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 1-13.  doi: 10.1166/jcsmd.2015.1070.

[5]

S. Eisenhofer, A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria, PhD Dissertation, TU Munich, 2013.

[6]

S. EisenhoferM. A. EfendievM. ÔtaniS. Schulz and H. Zischka, On a ODE-PDE coupling model of the mitochondrial swelling process, Discrete and Continuous Dynamical Syst. Ser. B, 20 (2015), 1031-1057.  doi: 10.3934/dcdsb.2015.20.1031.

[7]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.

[8]

G. KroemerL. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163. 

[9]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  doi: 10.1016/0022-0396(82)90119-X.

[10]

V. PetronilliC. ColaS. MassariR. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945. 

[11]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $\textrm{Ca}^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408. 

[12]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[13]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, J. A. Barth, 1995.

[14]

H. ZischkaN. LarochetteF. HoffmannD. HamöollerN. JägemannJ. LichtmanneggerL. JennenJ. Müller-HöckerF. RoggelM. GöttlicherA. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.  doi: 10.1021/ac800173r.

Figure 1.  Model simulation with $\alpha=10<C^-$: Shown are $u, N_1, N_2, N_3$ for selected times.
Figure 2.  Model simulation with $\alpha=10<C^-$: Shown is $N_1$ for selected times.
Figure 3.  Simulation to illustrate partial swelling in Theorem 5.2, using initial data (ref{T2init:eq}): shown is the minimum value of $N_2$ as a function of time for different base calcium ion concentrations $u_{base}$ (top left), along with the steady state distributions for $N_1$ (top right), $N_2$ (bottom left), and $N_3$ (bottom right) in the case $u_{base}=100$.
Figure 4.  Mitochondria populations $N_1$ and $N_2$ as a function of time in three points of the domain on a line through the center point: A (close to the boundary), B (half way between boundary and center), C (in the center), for six different values of the external calcium ion concentration $\alpha$.
Table 1.  Default parameter values, cf also [5]
parameter symbol value remark
lower (initiation) swelling threshold $C^-$ 20 (varied)
upper (maximum) swelling threshold $C^+$ 200
maximum transition rate for $N_1\rightarrow N_2$ $f^\ast$ 1
maximum transition rate for $N_2\rightarrow N_3$ $g^\ast$ 1
diffusion coefficient $d_1$ 0.2 (varied)
feedback parameter $d_2$ 30
parameter symbol value remark
lower (initiation) swelling threshold $C^-$ 20 (varied)
upper (maximum) swelling threshold $C^+$ 200
maximum transition rate for $N_1\rightarrow N_2$ $f^\ast$ 1
maximum transition rate for $N_2\rightarrow N_3$ $g^\ast$ 1
diffusion coefficient $d_1$ 0.2 (varied)
feedback parameter $d_2$ 30
[1]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[2]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[3]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[4]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[5]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Addendum to: "Variational source conditions for inverse Robin and flux problems by partial measurements". Inverse Problems and Imaging, 2022, 16 (2) : 481-481. doi: 10.3934/ipi.2022003

[6]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Variational source conditions for inverse Robin and flux problems by partial measurements. Inverse Problems and Imaging, 2022, 16 (2) : 283-304. doi: 10.3934/ipi.2021050

[7]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control and Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[8]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[9]

Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831

[10]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[11]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[12]

Le Thi Phuong Ngoc, Khong Thi Thao Uyen, Nguyen Huu Nhan, Nguyen Thanh Long. On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions. Communications on Pure and Applied Analysis, 2022, 21 (2) : 585-623. doi: 10.3934/cpaa.2021190

[13]

Ana-Maria Moșneagu. On some local and nonlocal reaction-diffusion models with Robin boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022161

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[15]

Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3267-3284. doi: 10.3934/dcdss.2020335

[16]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[17]

Mustapha Mokhtar-Kharroubi. Spectra of structured diffusive population equations with generalized Wentzell-Robin boundary conditions and related topics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3551-3563. doi: 10.3934/dcdss.2020244

[18]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[19]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[20]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (124)
  • HTML views (74)
  • Cited by (1)

[Back to Top]