July  2017, 37(7): 4131-4158. doi: 10.3934/dcds.2017176

Mathematical analysis of an in vivo model of mitochondrial swelling

1. 

Institute for Computational Biology, Helmholtz Zentrum München, Ingolstäder Landstr. 1, 85764 Neuherberg, Germany

2. 

Department of Applied Phsyics, School of Science and Engineering, Waseda University 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-855, Japan

3. 

Department of Mathematics and Statistics, University of Guelph, Guelph ON, N1G2W1, Canada

* Corresponding author: Messoud Efendiev

Received  October 2016 Revised  February 2017 Published  April 2017

Fund Project: M.O. is partly supported by the Grant-in-Aid for Scientific Research #15K13451, the Ministry of Education, Culture, Sports, Science, and Technology, Japan; H.J.E. is partly supported by the Natrural Science and Engineering Researc Council of Canada through a Discovery Grant.

We analyze the effect of Robin boundary conditions in a mathematical model for a mitochondria swelling in a living organism. This is a coupled PDE/ODE model for the dependent variables calcium ion contration and three fractions of mitochondria that are distinguished by their state of swelling activity. The model assumes that the boundary is a permeable 'membrane', through which calcium ions can both enter or leave the cell. Under biologically relevant assumptions on the data, we prove the well-posedness of solutions of the model and study the asymptotic behavior of its solutions. We augment the analysis of the model with computer simulations that illustrate the theoretically obtained results.

Citation: Messoud Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. Mathematical analysis of an in vivo model of mitochondrial swelling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4131-4158. doi: 10.3934/dcds.2017176
References:
[1]

S. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324.  doi: 10.1137/S0036142902401311.  Google Scholar

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North Holland, Amsterdam, The Netherlands, 1973. Google Scholar

[3]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, (1971), 101-179.   Google Scholar

[4]

M. A. EfendievM. Ôtani and H. J. Eberl, A coupled PDE/ODE model of mitochondrial swelling: Large-time behavior of homogeneous Dirichlet problem, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 1-13.  doi: 10.1166/jcsmd.2015.1070.  Google Scholar

[5]

S. Eisenhofer, A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria, PhD Dissertation, TU Munich, 2013. Google Scholar

[6]

S. EisenhoferM. A. EfendievM. ÔtaniS. Schulz and H. Zischka, On a ODE-PDE coupling model of the mitochondrial swelling process, Discrete and Continuous Dynamical Syst. Ser. B, 20 (2015), 1031-1057.  doi: 10.3934/dcdsb.2015.20.1031.  Google Scholar

[7]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.  Google Scholar

[8]

G. KroemerL. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163.   Google Scholar

[9]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  doi: 10.1016/0022-0396(82)90119-X.  Google Scholar

[10]

V. PetronilliC. ColaS. MassariR. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945.   Google Scholar

[11]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $\textrm{Ca}^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408.   Google Scholar

[12]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[13]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, J. A. Barth, 1995.  Google Scholar

[14]

H. ZischkaN. LarochetteF. HoffmannD. HamöollerN. JägemannJ. LichtmanneggerL. JennenJ. Müller-HöckerF. RoggelM. GöttlicherA. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.  doi: 10.1021/ac800173r.  Google Scholar

show all references

References:
[1]

S. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324.  doi: 10.1137/S0036142902401311.  Google Scholar

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North Holland, Amsterdam, The Netherlands, 1973. Google Scholar

[3]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, (1971), 101-179.   Google Scholar

[4]

M. A. EfendievM. Ôtani and H. J. Eberl, A coupled PDE/ODE model of mitochondrial swelling: Large-time behavior of homogeneous Dirichlet problem, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 1-13.  doi: 10.1166/jcsmd.2015.1070.  Google Scholar

[5]

S. Eisenhofer, A coupled system of ordinary and partial differential equations modeling the swelling of mitochondria, PhD Dissertation, TU Munich, 2013. Google Scholar

[6]

S. EisenhoferM. A. EfendievM. ÔtaniS. Schulz and H. Zischka, On a ODE-PDE coupling model of the mitochondrial swelling process, Discrete and Continuous Dynamical Syst. Ser. B, 20 (2015), 1031-1057.  doi: 10.3934/dcdsb.2015.20.1031.  Google Scholar

[7]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.  Google Scholar

[8]

G. KroemerL. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163.   Google Scholar

[9]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  doi: 10.1016/0022-0396(82)90119-X.  Google Scholar

[10]

V. PetronilliC. ColaS. MassariR. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945.   Google Scholar

[11]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $\textrm{Ca}^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408.   Google Scholar

[12]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[13]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, J. A. Barth, 1995.  Google Scholar

[14]

H. ZischkaN. LarochetteF. HoffmannD. HamöollerN. JägemannJ. LichtmanneggerL. JennenJ. Müller-HöckerF. RoggelM. GöttlicherA. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.  doi: 10.1021/ac800173r.  Google Scholar

Figure 1.  Model simulation with $\alpha=10<C^-$: Shown are $u, N_1, N_2, N_3$ for selected times.
Figure 2.  Model simulation with $\alpha=10<C^-$: Shown is $N_1$ for selected times.
Figure 3.  Simulation to illustrate partial swelling in Theorem 5.2, using initial data (ref{T2init:eq}): shown is the minimum value of $N_2$ as a function of time for different base calcium ion concentrations $u_{base}$ (top left), along with the steady state distributions for $N_1$ (top right), $N_2$ (bottom left), and $N_3$ (bottom right) in the case $u_{base}=100$.
Figure 4.  Mitochondria populations $N_1$ and $N_2$ as a function of time in three points of the domain on a line through the center point: A (close to the boundary), B (half way between boundary and center), C (in the center), for six different values of the external calcium ion concentration $\alpha$.
Table 1.  Default parameter values, cf also [5]
parameter symbol value remark
lower (initiation) swelling threshold $C^-$ 20 (varied)
upper (maximum) swelling threshold $C^+$ 200
maximum transition rate for $N_1\rightarrow N_2$ $f^\ast$ 1
maximum transition rate for $N_2\rightarrow N_3$ $g^\ast$ 1
diffusion coefficient $d_1$ 0.2 (varied)
feedback parameter $d_2$ 30
parameter symbol value remark
lower (initiation) swelling threshold $C^-$ 20 (varied)
upper (maximum) swelling threshold $C^+$ 200
maximum transition rate for $N_1\rightarrow N_2$ $f^\ast$ 1
maximum transition rate for $N_2\rightarrow N_3$ $g^\ast$ 1
diffusion coefficient $d_1$ 0.2 (varied)
feedback parameter $d_2$ 30
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (70)
  • Cited by (1)

[Back to Top]