In this paper, we study the following quasilinear elliptic equation with critical Sobolev exponent:
$ -\Delta u +V(x)u-[\Delta(1+u^2)^{\frac 12}]\frac {u}{2(1+u^2)^\frac 12}=|u|^{2^*-2}u+|u|^{p-2}u, \quad x\in {{\mathbb{R}}^{N}}, $
which models the self-channeling of a high-power ultra short laser in matter, where N ≥ 3; 2 < p < 2* = $\frac{{2N}}{{N -2}}$ and V (x) is a given positive potential. Combining the change of variables and an abstract result developed by Jeanjean in [
Citation: |
[1] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() ![]() |
[2] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[3] |
J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.
doi: 10.1016/j.jde.2009.11.030.![]() ![]() ![]() |
[4] |
H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.
doi: 10.1063/1.860828.![]() ![]() |
[5] |
H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[6] |
X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.
doi: 10.1103/PhysRevLett.70.2082.![]() ![]() |
[7] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
[8] |
A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191.![]() ![]() ![]() |
[9] |
Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006.![]() ![]() ![]() |
[10] |
Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021.![]() ![]() ![]() |
[11] |
Y. Deng, S. Peng and S. Yan, Solitary wave solutions to a quasilinear Schrödinger equation modeling the self-channeling of a high-power ultrashort laser in matter, submitted.
![]() |
[12] |
M. F. Furtado, L. A. Maia and E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.
doi: 10.1006/jdeq.1997.3375.![]() ![]() ![]() |
[13] |
J. P. García Azorero and Alonso I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.
doi: 10.1006/jdeq.1997.3375.![]() ![]() ![]() |
[14] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\mathbb{R}}.{N}}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
[15] |
L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ${{\mathbb{R}}^{N}}$, Indiana Univ. Math. J., 54 (2005), 443-464.
doi: 10.1512/iumj.2005.54.2502.![]() ![]() ![]() |
[16] |
S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.
![]() |
[17] |
E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.
doi: 10.1063/1.525675.![]() ![]() ![]() |
[18] |
H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905.
doi: 10.1016/j.na.2009.01.171].![]() ![]() ![]() |
[19] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1987), 109-145.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
[20] |
J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
[21] |
J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335.![]() ![]() ![]() |
[22] |
J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, I, Proc. Amer. Math. Soc., 131 (2003), 441-448.
doi: 10.1090/S0002-9939-02-06783-7.![]() ![]() ![]() |
[23] |
X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006.![]() ![]() ![]() |
[24] |
X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.
doi: 10.1007/s00526-012-0497-0.![]() ![]() ![]() |
[25] |
A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${{\mathbb{R}}.{N}}$, J. Differential Equations, 229 (2006), 570-587.
doi: 10.1016/j.jde.2006.07.001.![]() ![]() ![]() |
[26] |
M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.
doi: 10.1007/s005260100105.![]() ![]() ![]() |
[27] |
B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.
doi: 10.1103/PhysRevE.50.R687.![]() ![]() |
[28] |
Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.
doi: 10.1016/j.na.2012.10.005.![]() ![]() ![]() |
[29] |
E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1.![]() ![]() ![]() |
[30] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[31] |
J. Yang, Y. Wang and A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 071502, 19pp.
doi: 10.1063/1.4811394.![]() ![]() ![]() |
[32] |
J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math., 14 (2012), 1250033, 14 pp.
doi: 10.1142/S0219199712500332.![]() ![]() ![]() |
[33] |
X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328.
![]() ![]() |