We prove that separated net arising from certain higher rank $\mathbb R.k$ actions on homogeneous spaces is bi-Lipschitz equivalent to a lattice.
Citation: |
[1] | D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal., 8 (1998), 273-282. doi: 10.1007/s000390050056. |
[2] | A. Haynes, M. Kelly and B. Weiss, Equivalence relations on separated nets arising from linear toral flows, Proceedings of the London Mathematical Society, 109 (2014), 1203-1228. doi: 10.1112/plms/pdu036. |
[3] | A. -P. José, D. Coronel and J. -M. Gambaudo, Linearly repetitive Delone sets are rectifiable, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 275-290. doi: 10.1016/j.anihpc.2012.07.006. |
[4] | A. Katok, The special representation theorem for multi-dimensional group actions, Asterisque, 49 (1977), 117-140. |
[5] | C. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal., 8 (1998), 304-314. doi: 10.1007/s000390050058. |
[6] | M. Ratner, Horocycle flows are loosely Bernoulli, Israel Journal of Mathematics, 31 (1978), 122-132. doi: 10.1007/BF02760543. |
[7] | C. Salvatore and L. Flaminio, Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds, Journal of Modern Dynamics, 9 (2015), 305-353. doi: 10.3934/jmd.2015.9.305. |
[8] | J. Tanis, Effective equidistribution for some unipotent flows in PSL ${\left({2, \mathbb{R}} \right)^k}$ mod cocompact irreducible lattice, preprint, arXiv: 1412.5353v3 (2015). |