• Previous Article
    The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators
  • DCDS Home
  • This Issue
  • Next Article
    Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces
August  2017, 37(8): 4239-4247. doi: 10.3934/dcds.2017181

On nonlocal symmetries generated by recursion operators: Second-order evolution equations

1. 

Division of Mathematics, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

2. 

Dipartimento di Matematica e Informatica, Università di Perugia, 06123, Perugia, Italy

* Corresponding author: norbert@ltu.se

Received  February 2017 Revised  May 2017 Published  April 2017

We introduce a new type of recursion operator suitable to generate a class of nonlocal symmetries for those second-order evolution equations in $1+1$ dimension which allow the complete integration of their time-independent versions. We show that this class of evolution equations is $C$-integrable (linearizable by a point transformation). We also discuss some applications.

Citation: M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181
References:
[1]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of PDEs Part Ⅱ: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[2]

M. Euler and N. Euler, Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.  doi: 10.2991/jnmp.2007.14.3.2.  Google Scholar

[3]

N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.  doi: 10.1142/S1402925109000509.  Google Scholar

[4]

M. EulerN. Euler and N. Petersson, Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.  doi: 10.1111/1467-9590.t01-1-00236.  Google Scholar

[5]

A. S. Fokas, Symmetries and Integrability, Stud. Appl. Math., 77 (1987), 253-299.  doi: 10.1002/sapm1987773253.  Google Scholar

[6]

P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215.  doi: 10.1063/1.523393.  Google Scholar

[7]

P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[8]

N. PeterssonN. Euler and M. Euler, Recursion Operators for a Class of Integrable ThirdOrder Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.  doi: 10.1111/j.0022-2526.2004.01511.x.  Google Scholar

show all references

References:
[1]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of PDEs Part Ⅱ: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[2]

M. Euler and N. Euler, Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.  doi: 10.2991/jnmp.2007.14.3.2.  Google Scholar

[3]

N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.  doi: 10.1142/S1402925109000509.  Google Scholar

[4]

M. EulerN. Euler and N. Petersson, Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.  doi: 10.1111/1467-9590.t01-1-00236.  Google Scholar

[5]

A. S. Fokas, Symmetries and Integrability, Stud. Appl. Math., 77 (1987), 253-299.  doi: 10.1002/sapm1987773253.  Google Scholar

[6]

P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215.  doi: 10.1063/1.523393.  Google Scholar

[7]

P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[8]

N. PeterssonN. Euler and M. Euler, Recursion Operators for a Class of Integrable ThirdOrder Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.  doi: 10.1111/j.0022-2526.2004.01511.x.  Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (52)
  • Cited by (1)

Other articles
by authors

[Back to Top]