We consider a diffuse interface model for tumor growth consisting of a Cahn--Hilliard equation with source terms coupled to a reaction-diffusion equation, which models a tumor growing in the presence of a nutrient species and surrounded by healthy tissue. The well-posedness of the system equipped with Neumann boundary conditions was found to require regular potentials with quadratic growth. In this work, Dirichlet boundary conditions are considered, and we establish the well-posedness of the system for regular potentials with higher polynomial growth and also for singular potentials. New difficulties are encountered due to the higher polynomial growth, but for regular potentials, we retain the continuous dependence on initial and boundary data for the chemical potential and for the order parameter in strong norms as established in the previous work. Furthermore, we deduce the well-posedness of a variant of the model with quasi-static nutrient by rigorously passing to the limit where the ratio of the nutrient diffusion time-scale to the tumor doubling time-scale is small.
Citation: |
[1] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.
doi: 10.1007/BF01176474.![]() ![]() ![]() |
[2] |
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, SpringerVerlag, New York, 2010.
doi: 10.1007/978-1-4419-5542-5.![]() ![]() ![]() |
[3] |
S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Commun. Math. Sci., 13 (2015), 1541-1567.
doi: 10.4310/CMS.2015.v13.n6.a9.![]() ![]() ![]() |
[4] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans le Espaces de Hilbert, North-Holland, Amsterdam, 1973.
![]() ![]() |
[5] |
H. Brezis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Commun. Pure Appl. Math., 23 (1970), 123-144.
doi: 10.1002/cpa.3160230107.![]() ![]() ![]() |
[6] |
Y. Chen, S. M. Wise, V. B. Shenoy and J. S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 726-754.
doi: 10.1002/cnm.2624.![]() ![]() ![]() |
[7] |
P. Colli, S. Frigeri and M. Grasselli, Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Math. Anal. Appl., 386 (2012), 428-444.
doi: 10.1016/j.jmaa.2011.08.008.![]() ![]() ![]() |
[8] |
P. Colli, G. Gilardi and D. Hilhorst, On a Cahn-Hilliard type phase field model related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423-2442.
doi: 10.3934/dcds.2015.35.2423.![]() ![]() ![]() |
[9] |
H. B. Frieboes, F. Jin, Y. -L. Chuang, S. M. Wise, J. S. Lowengrub and V. Cristini, Threedimensional multispecies nonlinear tumor growth -Ⅱ: Tumor invasion and angiogenesis, J. Theor. Biol., 264 (2010), 1254-1278.
doi: 10.1016/j.jtbi.2010.02.036.![]() ![]() ![]() |
[10] |
S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), 215-243.
doi: 10.1017/S0956792514000436.![]() ![]() ![]() |
[11] |
S. Frigeri, M. Grasselli and E. Rocca, A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity, 28 (2015), 1257-1293.
doi: 10.1088/0951-7715/28/5/1257.![]() ![]() ![]() |
[12] |
H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn-Hilliard-Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318-360.
doi: 10.3934/math.2016.3.318.![]() ![]() |
[13] |
H. Garcke and K. F. Lam, On a Cahn-Hilliard-Darcy system for tumour growth with solution dependent source terms, preprint, arXiv: 1611.00234.
![]() |
[14] |
H. Garcke and K. F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, European J. Appl. Math., 28 (2017), 284-316.
doi: 10.1017/s0956792516000292.![]() ![]() ![]() |
[15] |
H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.
doi: 10.1142/s0218202516500263.![]() ![]() ![]() |
[16] |
G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.
![]() ![]() |
[17] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.
doi: 10.3934/cpaa.2009.8.881.![]() ![]() ![]() |
[18] |
A. Hawkins-Daarud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3-24.
doi: 10.1002/cnm.1467.![]() ![]() ![]() |
[19] |
J. Jiang, H. Wu and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth, J. Differential Equ., 259 (2015), 3032-3077.
doi: 10.1016/j.jde.2015.04.009.![]() ![]() ![]() |
[20] |
J. S. Lowengrub, E. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24 (2013), 691-734.
doi: 10.1017/S0956792513000144.![]() ![]() ![]() |
[21] |
D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiei, Romania, 1978.
![]() ![]() |
[22] |
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, AMS, Providence, R. I. , 1997.
![]() ![]() |
[23] |
S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth -Ⅰ: Model and numerical method, J. Theor. Biol., 253 (2008), 524-543.
doi: 10.1016/j.jtbi.2008.03.027.![]() ![]() ![]() |
[24] |
E. Zeidler, Nonlinear Functional Analysis and its Applications. Part Ⅱ/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0981-2.![]() ![]() ![]() |
[25] |
W. P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989.
doi: 10.1007/978-1-4612-1015-3.![]() ![]() ![]() |