    August  2017, 37(8): 4347-4378. doi: 10.3934/dcds.2017186

## Statistical and deterministic dynamics of maps with memory

 1 Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada 2 Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, China 3 Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada

* Corresponding author: Paweł Góra

Received  April 2016 Revised  May 2017 Published  April 2017

Fund Project: The research of the authors was supported by NSERC grants. The research of Z. Li was also supported by NNSF of China (No. 11601136) and Doctor/Master grant at Honghe University (No. XJ16B07).

We consider a dynamical system to have memory if it remembers the current state as well as the state before that. The dynamics is defined as follows: $x_{n+1}=T_{\alpha }(x_{n-1}, x_{n})=\tau (\alpha \cdot x_{n}+(1-\alpha)\cdot x_{n-1}),$ where $\tau$ is a one-dimensional map on $I=[0, 1]$ and $0 < \alpha < 1$ determines how much memory is being used. $T_{\alpha }$ does not define a dynamical system since it maps $U=I\times I$ into $I$. In this note we let $\tau$ be the symmetric tent map. We shall prove that for $0 < \alpha < 0.46,$ the orbits of $\{x_{n}\}$ are described statistically by an absolutely continuous invariant measure (acim) in two dimensions. As $\alpha$ approaches $0.5$ from below, that is, as we approach a balance between the memory state $x_{n-1}$ and the present state $x_{n}$, the support of the acims become thinner until at $\alpha =0.5$, all points have period 3 or eventually possess period 3. For $% 0.5 < \alpha < 0.75$, we have a global attractor: for all starting points in $U$ except $(0, 0)$, the orbits are attracted to the fixed point $(2/3, 2/3).$ At $%\alpha=0.75,$ we have slightly more complicated periodic behavior.

Citation: Paweł Góra, Abraham Boyarsky, Zhenyang LI, Harald Proppe. Statistical and deterministic dynamics of maps with memory. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4347-4378. doi: 10.3934/dcds.2017186
##### References:
  P. Góra, A. Boyarsky and Z. Li, Singular SRB measures for a non 1-1 map of the unit square, Journal of Stat. Physics, 165 (2016), 409-433, available at http://arxiv.org/abs/1607. 01658, full-text view-only version: http://rdcu.be/kod0 doi: 10.1007/s10955-016-1620-y.  Google Scholar  F. Dyson, Birds and Frogs, Notices of Amer. Math. Soc., 56 (2009), 212-223. Google Scholar  J. Maynard Smith, Mathematical Ideas in Biology, Cambridge University Press, 1968. doi: 10.1017/CBO9780511565144. Google Scholar  B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223-248.  doi: 10.1007/BF02773219.  Google Scholar  M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane, Commun. Math Phys., 208 (2000), 605-622.  doi: 10.1007/s002200050003.  Google Scholar  G. -C. Wu and D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dynam., 80 (2015), 1697-1703.  doi: 10.1007/s11071-014-1250-3.  Google Scholar  L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), 625-629.  doi: 10.7153/jmi-06-60.  Google Scholar

show all references

##### References:
  P. Góra, A. Boyarsky and Z. Li, Singular SRB measures for a non 1-1 map of the unit square, Journal of Stat. Physics, 165 (2016), 409-433, available at http://arxiv.org/abs/1607. 01658, full-text view-only version: http://rdcu.be/kod0 doi: 10.1007/s10955-016-1620-y.  Google Scholar  F. Dyson, Birds and Frogs, Notices of Amer. Math. Soc., 56 (2009), 212-223. Google Scholar  J. Maynard Smith, Mathematical Ideas in Biology, Cambridge University Press, 1968. doi: 10.1017/CBO9780511565144. Google Scholar  B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223-248.  doi: 10.1007/BF02773219.  Google Scholar  M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane, Commun. Math Phys., 208 (2000), 605-622.  doi: 10.1007/s002200050003.  Google Scholar  G. -C. Wu and D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dynam., 80 (2015), 1697-1703.  doi: 10.1007/s11071-014-1250-3.  Google Scholar  L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), 625-629.  doi: 10.7153/jmi-06-60.  Google Scholar Absolute values of the eigenvalues of the derivatives of $G_1$ (red) and $G_2$ (green) as functions of $\alpha$ Partition into $A_1$ and $A_2$ for a) $\alpha=0.34$ and b) $\alpha=0.74$ a) Singular values for matrices $D_2D_1$ and $D_1D_1$. The lower curve intersects level 1 at $\alpha_1\sim 0.24760367$. b) Singular values for matrices $D_2D_2$ and $D_1D_2$. The lower curve intersects level 1 at $\sim 0.3709557543$ First two images of $A_1$ for a) $\alpha=0.25290169942$ and b) $\alpha=0.320169942$ a) Functions $cx,cy,cc$ in Proposition 9. b)Functions $cx+cc$ and $cx+cy+cc$ in Proposition 9 Region $G(A_2)\cap A_1$ and its image for a) $\alpha=0.29$ and b) $\alpha=0.34$ Further images of $G(G^3(B)\cap A_2)\cap A_1$ for a) $\alpha=0.391$ and b) $\alpha=0.394$ Further images of $C_1=G(G^3(B)\cap A_2)\cap A_2$ (thick brown), for a) $\alpha=0.343$ and b) $\alpha=0.355$ The image of $G^3(B)\cap A_2$ for a) $\alpha=0.415$ and b) $\alpha=0.432$ Images of $O_6$: a) 6 images for $\alpha=0.446$, b) 9 images for $\alpha=0.451$ a: Support of conjectured acim for $\alpha=0.493$. b: Close-up of one of the clusters in part a Trapping region $T$ for $1/2 < \alpha\le \sim 0.593$. Case $\alpha=0.533$ is shown a)The graph of $z-t$ and b) of $y(z_i)-y_w$ for the proof of Proposition 23 $\alpha =0.63$ (case ii)) a) Trapping region $T$ (red) and its image $G(T)$ (dashed black). b) Region $W$ and its images, $G^4(W)\subset T$ $\alpha =0.594$ (case i)) a) Region $W$ and its images in green except for $G^3(W)$ in magenta, $G^5(W)\subset T$. b) Enlargement of the intersection of $W$ and $G^3(W)$ which causes $G^4(W)\not\subset T$ $\alpha =0.69$ (case ⅲ)) a) Trapping region $T$ (red) and its image $G(T)$ (dashed black). b) Region $W$ and its images, $G^4(W)\subset T$ $\alpha=0.734$ a) the trapping region $T$ (red) and its image $G(T)$ (dashed black). b) shows $W$ and its images with $G^4(W)\subset T$ $\alpha=0.734$ a)the old trapping region of Proposition 24 and the points $G(p_4)$, $G^2(p_4)$, $G^3(p_4)$. b) enlarged $T$, $G^3(W)$ and $G^4(W)$ $\alpha=0743$ a) Trapping region $T$ (red) and its image $G(T)$ (dashed black). The dashed red line is an eigenline going through $X_0$. b) Region $W$ and its images (green), $G^4(W)\subset T$
  Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217  Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031  Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048  Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257  Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122  Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045  A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108  Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444  Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459  Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015  Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375  Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076  Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301  Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366  Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344  Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.338