\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry

  • * Corresponding author: Dongchen Li

    * Corresponding author: Dongchen Li 
This work was supported by grant RSF 14-41-00044. The authors also acknowledge support by the Royal Society grant IE141468 and EU Marie-Curie IRSES Brazilian-European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS).
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • We prove that a pair of heterodimensional cycles can be born at the bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus equilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic flow with a $\mathbb{Z}_2$ symmetry. We also show that these heterodimensional cycles can belong to a chain-transitive attractor of the system along with persistent homoclinic tangency.

    Mathematics Subject Classification: Primary: 37G20, 37G25, 37G35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The dashed curves represent the two homoclinic loops and the solid vertical lines represent leaves of the foliation $\mathcal{F}_0$. The coincidence condition for system $X$ is that, for any point of $\Gamma^+$ lying in a leaf $l$, there exists one point of $\Gamma^-$ that also lies in $l$

    Figure 2.  For a four-dimensional system, the intersection points $M^+$ and $M^-$ on a small three-dimensional cross-section $\Pi$ belong to the same leaf of the foliation $\mathcal{F}_1$

    Figure 3.  As shown in figure (a), we can create an infinite sequence of index-2 point $Q_k^-$ accumulating on $M^-$ while keeping the intersection $W^u(P)\cap W^{ss}(M^-)$ by changing $\mu, \rho$ and $\nu$ together. In figure (b), the intersection $W^u(P)\cap W^s(Q_{k_0}^-)$ is created by changing $\nu$)

    Figure 4.  The index is determined by the pair ($\lambda_1+\lambda_2, \lambda_1\lambda_2$)

  • [1] V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Akademiia Nauk SSSR Doklady, 234 (1977), 336-339. 
    [2] V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the structurally unstable attracting limit sets of Lorenz attractor type, Tran. Moscow Math. Soc., 2 (1983), 153-215. 
    [3] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, (Russian), Trudy Mat. Inst. Steklov., 90 (1967), 209pp. 
    [4] R. BarrioA. L. Shilnikov and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, International Journal of Bifurcation and Chaos, 22 (2008), 1230016, 24 pp.  doi: 10.1142/S0218127412300169.
    [5] C. Bonatti and S. Crovisier, Center manifolds for partially hyperbolic sets without strong unstable connections, Journal of the Institute of Mathematics of Jussieu, 15 (2016), 785-828.  doi: 10.1017/S1474748015000055.
    [6] C. Bonatti and L. J. Díaz, Persistent transitive diffeomorphisms, Annals of Mathematics, 143 (1996), 357-396.  doi: 10.2307/2118647.
    [7] C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C1-generic dynamics, Journal of the Institute of Mathematics of Jussieu, 7 (2008), 469-525.  doi: 10.1017/S1474748008000030.
    [8] C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.
    [9] L. J. Díaz and J. Rocha, Non-connected heterodimensional cycles: Bifurcation and stability, Nonlinearity, 5 (1992), 1315-1341.  doi: 10.1088/0951-7715/5/6/006.
    [10] L. J. Díaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory and Dynamical Systems, 15 (1995), 291-315.  doi: 10.1017/S0143385700008385.
    [11] L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at the unfolding of heteroclinic bifurcations, Ergodic Theory and Dynamical Systems, 8 (1995), 693-713.  doi: 10.1088/0951-7715/8/5/003.
    [12] J. W. EvansN. Fenichel and J. A. Feroe, Double impulse solutions in nerve axon equations, SIAM J. Appl. Math., 42 (1982), 219-234.  doi: 10.1137/0142016.
    [13] J. A. Feroe, Homoclinic orbits in a parametrized saddle-focus system, Phys. D, 62 (1993), 254-262.  doi: 10.1016/0167-2789(93)90285-9.
    [14] P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation, Physics Letters A, 97 (1983), 1-4.  doi: 10.1016/0375-9601(83)90085-3.
    [15] S. V. GonchenkoD. V. Turaev and L. P. Shilnikov, On the existence of Newhouse regions in a neighbourhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case), Dokl. Akad. Nauk, 47 (1993), 268-273. 
    [16] S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On global bifurcations in threedimensional diffeomorphisms leading to wild Lorenz-like attractors, Reg. Chaot. Dyn., 14 (2009), 137-147.  doi: 10.1134/S1560354709010092.
    [17] S. V. GonchenkoD. V. TuraevP. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10 (1997), 409-423.  doi: 10.1088/0951-7715/10/2/006.
    [18] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer-Lecture Notes on Mathematics, 583, Heidelberg, 1977.
    [19] A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems, Elsevier, 3 (2010), 379-524.  doi: 10.1016/S1874-575X(10)00316-4.
    [20] M. Hurley, Attractors: Persistence and density of their basins, Trans. Amer. Math. Soc., 269 (1982), 247-271.  doi: 10.1090/S0002-9947-1982-0637037-7.
    [21] D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a Saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.  doi: 10.1088/1361-6544/30/1/173.
    [22] S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math, 50 (1979), 101-151. 
    [23] S. E. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque, 31 (1976), 43-140. 
    [24] I. M. Ovsyannikov and L. P. Shilnikov, On systems with a saddle-focus homoclinic curve, Math. USSR Sbornik, 58 (1987), 557-574.  doi: 10.1070/SM1987v058n02ABEH003120.
    [25] I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos, Math. USSR Sbornik, 73 (1992), 415-443. 
    [26] J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math, 140 (1994), 207-250.  doi: 10.2307/2118546.
    [27] J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (2000), 335-347. 
    [28] D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.  doi: 10.1007/BF01206949.
    [29] M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci., 9 (1999), 525-573.  doi: 10.1007/s003329900078.
    [30] L. P. Shilnikov, A case of the existence of a countable number of periodic motions (Point mapping proof of existence theorem showing neighbourhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions), (Russian), Dokl. Akad. Nauk SSSR, 160 (1965), 558-561. 
    [31] L. P. Shilnikov, A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Math. USSR Sbornik, 10 (1970), 91-102. 
    [32] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅰ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001.
    [33] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅱ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001.
    [34] W. Tucker, A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2 (2002), 53-117.  doi: 10.1007/s002080010018.
    [35] D. V. Turaev, On dimension of non-local bifurcational problems, International Journal of Bifurcation and Chaos, 6 (1996), 919-948.  doi: 10.1142/S0218127496000515.
    [36] D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, Math. USSR Sbornik, 189 (1998), 291-314.  doi: 10.1070/SM1998v189n02ABEH000300.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(259) PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return