August  2017, 37(8): 4399-4437. doi: 10.3934/dcds.2017189

Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry

1. 

Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

2. 

Department of Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod 603950, Russia

3. 

Joseph Meyerhoff Visiting Professor, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel

* Corresponding author: Dongchen Li

Received  February 2017 Revised  February 2017 Published  April 2017

Fund Project: This work was supported by grant RSF 14-41-00044. The authors also acknowledge support by the Royal Society grant IE141468 and EU Marie-Curie IRSES Brazilian-European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS)

We prove that a pair of heterodimensional cycles can be born at the bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus equilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic flow with a $\mathbb{Z}_2$ symmetry. We also show that these heterodimensional cycles can belong to a chain-transitive attractor of the system along with persistent homoclinic tangency.

Citation: Dongchen Li, Dmitry V. Turaev. Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4399-4437. doi: 10.3934/dcds.2017189
References:
[1]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Akademiia Nauk SSSR Doklady, 234 (1977), 336-339. Google Scholar

[2]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the structurally unstable attracting limit sets of Lorenz attractor type, Tran. Moscow Math. Soc., 2 (1983), 153-215. Google Scholar

[3]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, (Russian), Trudy Mat. Inst. Steklov., 90 (1967), 209pp. Google Scholar

[4]

R. BarrioA. L. Shilnikov and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, International Journal of Bifurcation and Chaos, 22 (2008), 1230016, 24 pp. doi: 10.1142/S0218127412300169. Google Scholar

[5]

C. Bonatti and S. Crovisier, Center manifolds for partially hyperbolic sets without strong unstable connections, Journal of the Institute of Mathematics of Jussieu, 15 (2016), 785-828. doi: 10.1017/S1474748015000055. Google Scholar

[6]

C. Bonatti and L. J. Díaz, Persistent transitive diffeomorphisms, Annals of Mathematics, 143 (1996), 357-396. doi: 10.2307/2118647. Google Scholar

[7]

C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C1-generic dynamics, Journal of the Institute of Mathematics of Jussieu, 7 (2008), 469-525. doi: 10.1017/S1474748008000030. Google Scholar

[8]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. Google Scholar

[9]

L. J. Díaz and J. Rocha, Non-connected heterodimensional cycles: Bifurcation and stability, Nonlinearity, 5 (1992), 1315-1341. doi: 10.1088/0951-7715/5/6/006. Google Scholar

[10]

L. J. Díaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory and Dynamical Systems, 15 (1995), 291-315. doi: 10.1017/S0143385700008385. Google Scholar

[11]

L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at the unfolding of heteroclinic bifurcations, Ergodic Theory and Dynamical Systems, 8 (1995), 693-713. doi: 10.1088/0951-7715/8/5/003. Google Scholar

[12]

J. W. EvansN. Fenichel and J. A. Feroe, Double impulse solutions in nerve axon equations, SIAM J. Appl. Math., 42 (1982), 219-234. doi: 10.1137/0142016. Google Scholar

[13]

J. A. Feroe, Homoclinic orbits in a parametrized saddle-focus system, Phys. D, 62 (1993), 254-262. doi: 10.1016/0167-2789(93)90285-9. Google Scholar

[14]

P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation, Physics Letters A, 97 (1983), 1-4. doi: 10.1016/0375-9601(83)90085-3. Google Scholar

[15]

S. V. GonchenkoD. V. Turaev and L. P. Shilnikov, On the existence of Newhouse regions in a neighbourhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case), Dokl. Akad. Nauk, 47 (1993), 268-273. Google Scholar

[16]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On global bifurcations in threedimensional diffeomorphisms leading to wild Lorenz-like attractors, Reg. Chaot. Dyn., 14 (2009), 137-147. doi: 10.1134/S1560354709010092. Google Scholar

[17]

S. V. GonchenkoD. V. TuraevP. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10 (1997), 409-423. doi: 10.1088/0951-7715/10/2/006. Google Scholar

[18]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer-Lecture Notes on Mathematics, 583, Heidelberg, 1977. Google Scholar

[19]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems, Elsevier, 3 (2010), 379-524. doi: 10.1016/S1874-575X(10)00316-4. Google Scholar

[20]

M. Hurley, Attractors: Persistence and density of their basins, Trans. Amer. Math. Soc., 269 (1982), 247-271. doi: 10.1090/S0002-9947-1982-0637037-7. Google Scholar

[21]

D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a Saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206. doi: 10.1088/1361-6544/30/1/173. Google Scholar

[22]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math, 50 (1979), 101-151. Google Scholar

[23]

S. E. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque, 31 (1976), 43-140. Google Scholar

[24]

I. M. Ovsyannikov and L. P. Shilnikov, On systems with a saddle-focus homoclinic curve, Math. USSR Sbornik, 58 (1987), 557-574. doi: 10.1070/SM1987v058n02ABEH003120. Google Scholar

[25]

I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos, Math. USSR Sbornik, 73 (1992), 415-443. Google Scholar

[26]

J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math, 140 (1994), 207-250. doi: 10.2307/2118546. Google Scholar

[27]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (2000), 335-347. Google Scholar

[28]

D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151. doi: 10.1007/BF01206949. Google Scholar

[29]

M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci., 9 (1999), 525-573. doi: 10.1007/s003329900078. Google Scholar

[30]

L. P. Shilnikov, A case of the existence of a countable number of periodic motions (Point mapping proof of existence theorem showing neighbourhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions), (Russian), Dokl. Akad. Nauk SSSR, 160 (1965), 558-561. Google Scholar

[31]

L. P. Shilnikov, A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Math. USSR Sbornik, 10 (1970), 91-102. Google Scholar

[32]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅰ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001. Google Scholar

[33]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅱ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001. Google Scholar

[34]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2 (2002), 53-117. doi: 10.1007/s002080010018. Google Scholar

[35]

D. V. Turaev, On dimension of non-local bifurcational problems, International Journal of Bifurcation and Chaos, 6 (1996), 919-948. doi: 10.1142/S0218127496000515. Google Scholar

[36]

D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, Math. USSR Sbornik, 189 (1998), 291-314. doi: 10.1070/SM1998v189n02ABEH000300. Google Scholar

show all references

References:
[1]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Akademiia Nauk SSSR Doklady, 234 (1977), 336-339. Google Scholar

[2]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On the structurally unstable attracting limit sets of Lorenz attractor type, Tran. Moscow Math. Soc., 2 (1983), 153-215. Google Scholar

[3]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, (Russian), Trudy Mat. Inst. Steklov., 90 (1967), 209pp. Google Scholar

[4]

R. BarrioA. L. Shilnikov and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, International Journal of Bifurcation and Chaos, 22 (2008), 1230016, 24 pp. doi: 10.1142/S0218127412300169. Google Scholar

[5]

C. Bonatti and S. Crovisier, Center manifolds for partially hyperbolic sets without strong unstable connections, Journal of the Institute of Mathematics of Jussieu, 15 (2016), 785-828. doi: 10.1017/S1474748015000055. Google Scholar

[6]

C. Bonatti and L. J. Díaz, Persistent transitive diffeomorphisms, Annals of Mathematics, 143 (1996), 357-396. doi: 10.2307/2118647. Google Scholar

[7]

C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C1-generic dynamics, Journal of the Institute of Mathematics of Jussieu, 7 (2008), 469-525. doi: 10.1017/S1474748008000030. Google Scholar

[8]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. Google Scholar

[9]

L. J. Díaz and J. Rocha, Non-connected heterodimensional cycles: Bifurcation and stability, Nonlinearity, 5 (1992), 1315-1341. doi: 10.1088/0951-7715/5/6/006. Google Scholar

[10]

L. J. Díaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory and Dynamical Systems, 15 (1995), 291-315. doi: 10.1017/S0143385700008385. Google Scholar

[11]

L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at the unfolding of heteroclinic bifurcations, Ergodic Theory and Dynamical Systems, 8 (1995), 693-713. doi: 10.1088/0951-7715/8/5/003. Google Scholar

[12]

J. W. EvansN. Fenichel and J. A. Feroe, Double impulse solutions in nerve axon equations, SIAM J. Appl. Math., 42 (1982), 219-234. doi: 10.1137/0142016. Google Scholar

[13]

J. A. Feroe, Homoclinic orbits in a parametrized saddle-focus system, Phys. D, 62 (1993), 254-262. doi: 10.1016/0167-2789(93)90285-9. Google Scholar

[14]

P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation, Physics Letters A, 97 (1983), 1-4. doi: 10.1016/0375-9601(83)90085-3. Google Scholar

[15]

S. V. GonchenkoD. V. Turaev and L. P. Shilnikov, On the existence of Newhouse regions in a neighbourhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case), Dokl. Akad. Nauk, 47 (1993), 268-273. Google Scholar

[16]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On global bifurcations in threedimensional diffeomorphisms leading to wild Lorenz-like attractors, Reg. Chaot. Dyn., 14 (2009), 137-147. doi: 10.1134/S1560354709010092. Google Scholar

[17]

S. V. GonchenkoD. V. TuraevP. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10 (1997), 409-423. doi: 10.1088/0951-7715/10/2/006. Google Scholar

[18]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer-Lecture Notes on Mathematics, 583, Heidelberg, 1977. Google Scholar

[19]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems, Elsevier, 3 (2010), 379-524. doi: 10.1016/S1874-575X(10)00316-4. Google Scholar

[20]

M. Hurley, Attractors: Persistence and density of their basins, Trans. Amer. Math. Soc., 269 (1982), 247-271. doi: 10.1090/S0002-9947-1982-0637037-7. Google Scholar

[21]

D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a Saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206. doi: 10.1088/1361-6544/30/1/173. Google Scholar

[22]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math, 50 (1979), 101-151. Google Scholar

[23]

S. E. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque, 31 (1976), 43-140. Google Scholar

[24]

I. M. Ovsyannikov and L. P. Shilnikov, On systems with a saddle-focus homoclinic curve, Math. USSR Sbornik, 58 (1987), 557-574. doi: 10.1070/SM1987v058n02ABEH003120. Google Scholar

[25]

I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos, Math. USSR Sbornik, 73 (1992), 415-443. Google Scholar

[26]

J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math, 140 (1994), 207-250. doi: 10.2307/2118546. Google Scholar

[27]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (2000), 335-347. Google Scholar

[28]

D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151. doi: 10.1007/BF01206949. Google Scholar

[29]

M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci., 9 (1999), 525-573. doi: 10.1007/s003329900078. Google Scholar

[30]

L. P. Shilnikov, A case of the existence of a countable number of periodic motions (Point mapping proof of existence theorem showing neighbourhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions), (Russian), Dokl. Akad. Nauk SSSR, 160 (1965), 558-561. Google Scholar

[31]

L. P. Shilnikov, A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Math. USSR Sbornik, 10 (1970), 91-102. Google Scholar

[32]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅰ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001. Google Scholar

[33]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ⅱ), 2nd World Sci. -Singapore, New Jersey, London, Hong Kong, 2001. doi: 10.1142/9789812798558_0001. Google Scholar

[34]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2 (2002), 53-117. doi: 10.1007/s002080010018. Google Scholar

[35]

D. V. Turaev, On dimension of non-local bifurcational problems, International Journal of Bifurcation and Chaos, 6 (1996), 919-948. doi: 10.1142/S0218127496000515. Google Scholar

[36]

D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, Math. USSR Sbornik, 189 (1998), 291-314. doi: 10.1070/SM1998v189n02ABEH000300. Google Scholar

Figure 1.  The dashed curves represent the two homoclinic loops and the solid vertical lines represent leaves of the foliation $\mathcal{F}_0$. The coincidence condition for system $X$ is that, for any point of $\Gamma^+$ lying in a leaf $l$, there exists one point of $\Gamma^-$ that also lies in $l$
Figure 2.  For a four-dimensional system, the intersection points $M^+$ and $M^-$ on a small three-dimensional cross-section $\Pi$ belong to the same leaf of the foliation $\mathcal{F}_1$
Figure 3.  As shown in figure (a), we can create an infinite sequence of index-2 point $Q_k^-$ accumulating on $M^-$ while keeping the intersection $W^u(P)\cap W^{ss}(M^-)$ by changing $\mu, \rho$ and $\nu$ together. In figure (b), the intersection $W^u(P)\cap W^s(Q_{k_0}^-)$ is created by changing $\nu$)
Figure 4.  The index is determined by the pair ($\lambda_1+\lambda_2, \lambda_1\lambda_2$)
[1]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[2]

Flaviano Battelli, Ken Palmer. A remark about Sil'nikov saddle-focus homoclinic orbits. Communications on Pure & Applied Analysis, 2011, 10 (3) : 817-830. doi: 10.3934/cpaa.2011.10.817

[3]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[4]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[5]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[6]

Lorenzo J. Díaz, Jorge Rocha. How do hyperbolic homoclinic classes collide at heterodimensional cycles?. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 589-627. doi: 10.3934/dcds.2007.17.589

[7]

Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943

[8]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[9]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[10]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[11]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[12]

Shin Kiriki, Yusuke Nishizawa, Teruhiko Soma. Heterodimensional tangencies on cycles leading to strange attractors. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 285-300. doi: 10.3934/dcds.2010.27.285

[13]

Xinfu Chen. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 121-140. doi: 10.3934/dcds.1996.2.121

[14]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[15]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[16]

Flaviano Battelli, Claudio Lazzari. On the bifurcation from critical homoclinic orbits in n-dimensional maps. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 289-303. doi: 10.3934/dcds.1997.3.289

[17]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[18]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[19]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[20]

Xiao Wen. Structurally stable homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (6)
  • Cited by (0)

Other articles
by authors

[Back to Top]