
-
Previous Article
Normalization in Banach scale Lie algebras via mould calculus and applications
- DCDS Home
- This Issue
-
Next Article
Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry
On the uniqueness of solution to generalized Chaplygin gas
Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia |
The main object of the paper is finding a unique solution to Riemann problem for generalized Chaplygin gas model. That is a model of the dark energy in Universe introduced in the last decade. It permits an infinite mass concentration so one has to consider solutions containing the Dirac delta function. Although it was easy to construct solution to any Riemann problem, the usual admissibility conditions, overcompressiveness, do not exclude unwanted delta-type waves when a classical solution exists. We are using Shadow Wave approach in order to solve that uniqueness problem since they are well adopted for using Lax entropy–entropy flux conditions and there is a rich family of convex entropies.
References:
[1] |
A. Baricz,
Bounds for modified Bessel functions of the first and second kinds, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 575-599.
doi: 10.1017/S0013091508001016. |
[2] |
M. C. Bento, O. Bertolami and A. A. Sen,
Generalized Chaplygin gas. accelerated expansion and dark energy-matter unification, Phys. Rev., D66 (2002), 043507.
doi: 10.1103/PhysRevD.66.043507. |
[3] |
Y. Brenier,
Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations, Journal of Mathematical Fluid Mechanics, 7 (2005), 326-331.
doi: 10.1007/s00021-005-0162-x. |
[4] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, New York, 2000.
![]() ![]() |
[5] |
G. -Q. Chen and H. Liu,
Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.
doi: 10.1137/S0036141001399350. |
[6] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Heidelberg, 2000.
doi: 10.1007/3-540-29089-3_14. |
[7] |
W. E, Y. G. Rykov and Ya. G. Sinai,
Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.
doi: 10.1007/BF02101897. |
[8] |
M. E. H. Ismail,
Complete monotonicity of modified bessel functions, Proceedings of the American Mathematical Society, ., 108 (1990), 353-361.
doi: 10.1090/S0002-9939-1990-0993753-9. |
[9] |
A. Kamenshchik, U. Moschella and V. Pasquier,
An alternative to quintessence, Phys. Lett., 511 (2001), 265-268.
doi: 10.1016/S0370-2693(01)00571-8. |
[10] |
B. L. Keyfitz and H. C. Kranzer,
Spaces of weighted measures for conservation laws with singular shock solutions, J. Diff. Eq., 118 (1995), 420-451.
doi: 10.1006/jdeq.1995.1080. |
[11] |
A. Laforgia and P. Natalini, Some inequalities for modified Bessel functions, Journal of Inequalities and Applications, 2010 (2010), Article ID 253035, 10 pages.
doi: 10.1155/2010/253035. |
[12] |
P. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in: IMA Volumes in Math. and its Appl. , B. L. Keyfitz, M. Shearer (EDS), Nonlinear evolution equations that change type, Springer Verlag, Vol 27,1990,126-138.
doi: 10.1007/978-1-4613-9049-7_10. |
[13] |
D. Mitrović and M. Nedeljkov,
Delta shock waves as a limit of shock waves, J. Hyp. Diff. Equ., 4 (2007), 629-653.
doi: 10.1142/S021989160700129X. |
[14] |
M. Nedeljkov,
Singular shock waves in interactions, Quart. Appl. Math., 66 (2008), 281-302.
doi: 10.1090/S0033-569X-08-01109-5. |
[15] |
M. Nedeljkov,
Shadow waves, entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.
doi: 10.1007/s00205-009-0281-2. |
[16] |
M. Nedeljkov,
Singular shock interactions in Chaplygin gas dynamic system, J. Differ. Equations, 256 (2014), 3859-3887.
doi: 10.1016/j.jde.2014.03.002. |
[17] |
E. Yu. Panov and V. M. Shelkovich,
δ0-Shock waves as a new type of solutions to systems of conservation laws, J. Differ. Equations, 228 (2006), 49-86.
doi: 10.1016/j.jde.2006.04.004. |
[18] |
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC-Press, Boca Raton, 1995.
![]() ![]() |
[19] |
D. Serre, Systems of Conservation Laws I, Cambridge University Press, 1999.
doi: 10.1017/CBO9780511612374. |
[20] |
M. Sun,
The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 342-353.
doi: 10.1016/j.cnsns.2015.12.013. |
[21] |
G. Wang,
The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.
doi: 10.1016/j.jmaa.2013.02.026. |
[22] |
G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, 1966. |
[23] |
H. Yang and Y. Zhang,
New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equations, 252 (2012), 5951-5993.
doi: 10.1016/j.jde.2012.02.015. |
show all references
References:
[1] |
A. Baricz,
Bounds for modified Bessel functions of the first and second kinds, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 575-599.
doi: 10.1017/S0013091508001016. |
[2] |
M. C. Bento, O. Bertolami and A. A. Sen,
Generalized Chaplygin gas. accelerated expansion and dark energy-matter unification, Phys. Rev., D66 (2002), 043507.
doi: 10.1103/PhysRevD.66.043507. |
[3] |
Y. Brenier,
Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations, Journal of Mathematical Fluid Mechanics, 7 (2005), 326-331.
doi: 10.1007/s00021-005-0162-x. |
[4] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, New York, 2000.
![]() ![]() |
[5] |
G. -Q. Chen and H. Liu,
Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.
doi: 10.1137/S0036141001399350. |
[6] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Heidelberg, 2000.
doi: 10.1007/3-540-29089-3_14. |
[7] |
W. E, Y. G. Rykov and Ya. G. Sinai,
Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.
doi: 10.1007/BF02101897. |
[8] |
M. E. H. Ismail,
Complete monotonicity of modified bessel functions, Proceedings of the American Mathematical Society, ., 108 (1990), 353-361.
doi: 10.1090/S0002-9939-1990-0993753-9. |
[9] |
A. Kamenshchik, U. Moschella and V. Pasquier,
An alternative to quintessence, Phys. Lett., 511 (2001), 265-268.
doi: 10.1016/S0370-2693(01)00571-8. |
[10] |
B. L. Keyfitz and H. C. Kranzer,
Spaces of weighted measures for conservation laws with singular shock solutions, J. Diff. Eq., 118 (1995), 420-451.
doi: 10.1006/jdeq.1995.1080. |
[11] |
A. Laforgia and P. Natalini, Some inequalities for modified Bessel functions, Journal of Inequalities and Applications, 2010 (2010), Article ID 253035, 10 pages.
doi: 10.1155/2010/253035. |
[12] |
P. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in: IMA Volumes in Math. and its Appl. , B. L. Keyfitz, M. Shearer (EDS), Nonlinear evolution equations that change type, Springer Verlag, Vol 27,1990,126-138.
doi: 10.1007/978-1-4613-9049-7_10. |
[13] |
D. Mitrović and M. Nedeljkov,
Delta shock waves as a limit of shock waves, J. Hyp. Diff. Equ., 4 (2007), 629-653.
doi: 10.1142/S021989160700129X. |
[14] |
M. Nedeljkov,
Singular shock waves in interactions, Quart. Appl. Math., 66 (2008), 281-302.
doi: 10.1090/S0033-569X-08-01109-5. |
[15] |
M. Nedeljkov,
Shadow waves, entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.
doi: 10.1007/s00205-009-0281-2. |
[16] |
M. Nedeljkov,
Singular shock interactions in Chaplygin gas dynamic system, J. Differ. Equations, 256 (2014), 3859-3887.
doi: 10.1016/j.jde.2014.03.002. |
[17] |
E. Yu. Panov and V. M. Shelkovich,
δ0-Shock waves as a new type of solutions to systems of conservation laws, J. Differ. Equations, 228 (2006), 49-86.
doi: 10.1016/j.jde.2006.04.004. |
[18] |
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC-Press, Boca Raton, 1995.
![]() ![]() |
[19] |
D. Serre, Systems of Conservation Laws I, Cambridge University Press, 1999.
doi: 10.1017/CBO9780511612374. |
[20] |
M. Sun,
The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 342-353.
doi: 10.1016/j.cnsns.2015.12.013. |
[21] |
G. Wang,
The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.
doi: 10.1016/j.jmaa.2013.02.026. |
[22] |
G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, 1966. |
[23] |
H. Yang and Y. Zhang,
New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equations, 252 (2012), 5951-5993.
doi: 10.1016/j.jde.2012.02.015. |







[1] |
Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041 |
[2] |
Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489 |
[3] |
M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121 |
[4] |
Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104 |
[5] |
Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008 |
[6] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[7] |
Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127 |
[8] |
Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391 |
[9] |
Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701 |
[10] |
Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023 |
[11] |
Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111 |
[12] |
Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure and Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031 |
[13] |
Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721 |
[14] |
Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez. A model of riots dynamics: Shocks, diffusion and thresholds. Networks and Heterogeneous Media, 2015, 10 (3) : 443-475. doi: 10.3934/nhm.2015.10.443 |
[15] |
Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations and Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541 |
[16] |
Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941 |
[17] |
Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733 |
[18] |
Youcef Mammeri. On the decay in time of solutions of some generalized regularized long waves equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 513-532. doi: 10.3934/cpaa.2008.7.513 |
[19] |
Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001 |
[20] |
Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]