August  2017, 37(8): 4507-4542. doi: 10.3934/dcds.2017193

Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity

Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Received  July 2016 Revised  March 2017 Published  April 2017

Fund Project: The author was supported by JSPS KAKENHI Grant Number 20140047.

This paper is devoted to studying a non-autonomous stochastic linear evolution equation in Banach spaces of martingale type 2. We construct unique strict solutions to the equation and show their maximal regularity. The abstract results are then applied to stochastic diffusion equations.

Citation: Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193
References:
[1]

P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. 

[2]

Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal., 4 (1995), 1-45.  doi: 10.1007/BF01048965.

[3]

Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.  doi: 10.1080/17442509708834122.

[4]

G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal., 259 (2010), 243-267.  doi: 10.1016/j.jfa.2009.11.019.

[5]

G. Da PratoF. FlandoliE. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab., 41 (2013), 3306-3344.  doi: 10.1214/12-AOP763.

[6]

G. Da PratoF. FlandoliE. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theoret. Probab., 28 (2015), 1571-1600.  doi: 10.1007/s10959-014-0545-0.

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[8]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.  doi: 10.1214/009117906000001006.

[9]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255 (2008), 940-993.  doi: 10.1016/j.jfa.2008.03.015.

[10]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Maximal Lp -regularity for stochastic evolution equations, SIAM J. Math. Anal., 44 (2012), 1372-1414.  doi: 10.1137/110832525.

[11]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic maximal Lp -regularity, Ann. Probab., 40 (2012), 788-812.  doi: 10.1214/10-AOP626.

[12]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Maximal γ -regularity, J. Evol. Equ., 15 (2015), 361-402.  doi: 10.1007/s00028-014-0264-0.

[13]

G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and Analysis, 1206 (1986), 167-241.  doi: 10.1007/BFb0076302.

[14]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited, Ⅰ, Math. Bohem., 118 (1993), 67-106. 

[15]

P. E. Sobolevskii, Parabolic equation in Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition, (Russian), Dokl. Akad. Nauk SSSR, 138 (1961), 59-62. 

[16]

H. Tanabe, Remarks on the equations of evolution in a Banach space, Osaka J. Math., 12 (1960), 145-166. 

[17]

H. Tanabe, Note on singular pertubation for abstract differential equations, Osaka J. Math., 1 (1964), 239-252. 

[18]

H. Tanabe, Equation of Evolution, Iwanami (in Japanese), 1975; Pitman (English translation), 1979.

[19]

H. Tanabe, Functional Analytical Methods for Partial Differential Equations, Marcel-Dekker, 1997.

[20]

T. V. Tạ, Regularity of solutions of abstract linear evolution equations, Lith. Math. J., 56 (2016), 268-290.  doi: 10.1007/s10986-016-9318-z.

[21]

T. V. Tạ, Note on abstract stochastic semilinear evolution equations, J. Korean Math. Soc., 54 (2017), 909-943. 

[22]

T. V. Tạ, Stochastic parabolic evolution equations in M-type 2 Banach spaces, ArXiv e-prints [arXiv: 1508.07340v2].

[23]

T. V. Tạ, Y. Yamamoto and A. Yagi, Strict solutions to stochastic parabolic evolution equations in M-type 2 Banach spaces, Funkcial. Ekvac. 26 pages (to appear).

[24]

M. C. Veraar, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10 (2010), 85-127.  doi: 10.1007/s00028-009-0041-7.

[25]

A. Yagi, Fractional powers of operators and evolution equations of parabolic type, Proc. Japan Acad. Ser. A Math. Sci., 64 (1988), 227-230.  doi: 10.3792/pjaa.64.227.

[26]

A. Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Funkcial. Ekvac., 32 (1989), 107-124. 

[27]

A. Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Ⅱ, Funkcial. Ekvac., 33 (1990), 139-150. 

[28]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.

show all references

References:
[1]

P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. 

[2]

Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal., 4 (1995), 1-45.  doi: 10.1007/BF01048965.

[3]

Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.  doi: 10.1080/17442509708834122.

[4]

G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal., 259 (2010), 243-267.  doi: 10.1016/j.jfa.2009.11.019.

[5]

G. Da PratoF. FlandoliE. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab., 41 (2013), 3306-3344.  doi: 10.1214/12-AOP763.

[6]

G. Da PratoF. FlandoliE. Priola and M. Röckner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theoret. Probab., 28 (2015), 1571-1600.  doi: 10.1007/s10959-014-0545-0.

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[8]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.  doi: 10.1214/009117906000001006.

[9]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255 (2008), 940-993.  doi: 10.1016/j.jfa.2008.03.015.

[10]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Maximal Lp -regularity for stochastic evolution equations, SIAM J. Math. Anal., 44 (2012), 1372-1414.  doi: 10.1137/110832525.

[11]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic maximal Lp -regularity, Ann. Probab., 40 (2012), 788-812.  doi: 10.1214/10-AOP626.

[12]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Maximal γ -regularity, J. Evol. Equ., 15 (2015), 361-402.  doi: 10.1007/s00028-014-0264-0.

[13]

G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and Analysis, 1206 (1986), 167-241.  doi: 10.1007/BFb0076302.

[14]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited, Ⅰ, Math. Bohem., 118 (1993), 67-106. 

[15]

P. E. Sobolevskii, Parabolic equation in Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition, (Russian), Dokl. Akad. Nauk SSSR, 138 (1961), 59-62. 

[16]

H. Tanabe, Remarks on the equations of evolution in a Banach space, Osaka J. Math., 12 (1960), 145-166. 

[17]

H. Tanabe, Note on singular pertubation for abstract differential equations, Osaka J. Math., 1 (1964), 239-252. 

[18]

H. Tanabe, Equation of Evolution, Iwanami (in Japanese), 1975; Pitman (English translation), 1979.

[19]

H. Tanabe, Functional Analytical Methods for Partial Differential Equations, Marcel-Dekker, 1997.

[20]

T. V. Tạ, Regularity of solutions of abstract linear evolution equations, Lith. Math. J., 56 (2016), 268-290.  doi: 10.1007/s10986-016-9318-z.

[21]

T. V. Tạ, Note on abstract stochastic semilinear evolution equations, J. Korean Math. Soc., 54 (2017), 909-943. 

[22]

T. V. Tạ, Stochastic parabolic evolution equations in M-type 2 Banach spaces, ArXiv e-prints [arXiv: 1508.07340v2].

[23]

T. V. Tạ, Y. Yamamoto and A. Yagi, Strict solutions to stochastic parabolic evolution equations in M-type 2 Banach spaces, Funkcial. Ekvac. 26 pages (to appear).

[24]

M. C. Veraar, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10 (2010), 85-127.  doi: 10.1007/s00028-009-0041-7.

[25]

A. Yagi, Fractional powers of operators and evolution equations of parabolic type, Proc. Japan Acad. Ser. A Math. Sci., 64 (1988), 227-230.  doi: 10.3792/pjaa.64.227.

[26]

A. Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Funkcial. Ekvac., 32 (1989), 107-124. 

[27]

A. Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Ⅱ, Funkcial. Ekvac., 33 (1990), 139-150. 

[28]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.

[1]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1867-1891. doi: 10.3934/cpaa.2021050

[2]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[3]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[4]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[5]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[6]

Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic and Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control and Related Fields, 2021, 11 (4) : 857-883. doi: 10.3934/mcrf.2020049

[8]

Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477

[9]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[10]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081

[11]

Alfredo Lorenzi, Gianluca Mola. Identification of a real constant in linear evolution equations in Hilbert spaces. Inverse Problems and Imaging, 2011, 5 (3) : 695-714. doi: 10.3934/ipi.2011.5.695

[12]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[13]

Tomomi Yokota, Kentarou Yoshii. Solvability in abstract evolution equations with countable time delays in Banach spaces: Global Lipschitz perturbation. Evolution Equations and Control Theory, 2021, 10 (4) : 689-699. doi: 10.3934/eect.2020086

[14]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[15]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results. Communications on Pure and Applied Analysis, 2013, 12 (6) : 3047-3071. doi: 10.3934/cpaa.2013.12.3047

[16]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1141-1165. doi: 10.3934/cpaa.2014.13.1141

[17]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[18]

Daliang Zhao, Yansheng Liu. Controllability of nonlinear fractional evolution systems in Banach spaces: A survey. Electronic Research Archive, 2021, 29 (5) : 3551-3580. doi: 10.3934/era.2021083

[19]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[20]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (103)
  • HTML views (67)
  • Cited by (1)

Other articles
by authors

[Back to Top]