In this paper, we study the following Hamiltonian elliptic system with gradient term and inverse square potential
$ \left\{ \begin{array}{ll}-\Delta u +\vec{b}(x)\cdot \nabla u +V(x)u-\frac{\mu}{|x|^{2}}v=H_{v}(x,u,v)\\-\Delta v -\vec{b}(x)\cdot \nabla v +V(x)v-\frac{\mu}{|x|^{2}}u=H_{u}(x,u,v)\\\end{array} \right.$
for $x\in\mathbb{R}^{N}$, where $N\geq3$, $\mu\in\mathbb{R}$, and $V(x)$, $\vec{b}(x)$ and $H(x, u, v)$ are $1$-periodic in $x$. Under suitable conditions, we prove that the system possesses a ground state solution via variational methods for sufficiently small $\mu\geq0$. Moreover, we provide the comparison of the energy of ground state solutions for the case $\mu>0$ and $\mu=0$. Finally, we also give the convergence property of ground state solutions as $\mu\to0^+$.
Citation: |
[1] |
A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations, 191 (2003), 348-376.
doi: 10.1016/S0022-0396(03)00017-2.![]() ![]() ![]() |
[2] |
T. Bartsch and D. G. De Figueiredo, Infinitely mang solutions of nonlinear elliptic systems, in: Progr. Nonlinear Differential Equations Appl. , Vol. 35, Birkhäuser, Basel, Switzerland. (1999), 51-67.
![]() ![]() |
[3] |
T. Bartsch and Y. H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach., 279 (2006), 1267-1288.
doi: 10.1002/mana.200410420.![]() ![]() ![]() |
[4] |
D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations, 205 (2004), 521-537.
doi: 10.1016/j.jde.2004.03.005.![]() ![]() ![]() |
[5] |
D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problem with critical Sobolev and Hardy terms, J. Differential Equations, 193 (2003), 424-434.
doi: 10.1016/S0022-0396(03)00118-9.![]() ![]() ![]() |
[6] |
D. Cao and S. Peng, A global compactness result for singular elliptic problems involving critical Sobolev exponent, Proc. Amer. Math. Soc., 131 (2003), 1857-1866.
doi: 10.1090/S0002-9939-02-06729-1.![]() ![]() ![]() |
[7] |
D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var., 38 (2010), 471-501.
doi: 10.1007/s00526-009-0295-5.![]() ![]() ![]() |
[8] |
Z. Chen and W. Zou, On an elliptic problem with critical exponent and Hardy potential, J. Differential Equations, 252 (2012), 969-987.
doi: 10.1016/j.jde.2011.09.042.![]() ![]() ![]() |
[9] |
D. G. De Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations Stationary Partial Differential Equations, 5, Elsevier, (2008), 1-48. Chapter1.
doi: 10.1016/S1874-5733(08)80008-3.![]() ![]() ![]() |
[10] |
D. G. De Figueiredo and J. Yang, Decay, Symmetry and existence of solutions of semilinear elliptic systems, Nonlinear. Anal., 33 (1998), 211-234.
doi: 10.1016/S0362-546X(97)00548-8.![]() ![]() ![]() |
[11] |
Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, J. Differential Equations, 253 (2012), 1376-1398.
doi: 10.1016/j.jde.2012.05.009.![]() ![]() ![]() |
[12] |
Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2007.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
[13] |
V. Felli, On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials, J. Anal. Math., 108 (2009), 189-217.
doi: 10.1007/s11854-009-0023-2.![]() ![]() ![]() |
[14] |
V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469-495.
doi: 10.1080/03605300500394439.![]() ![]() ![]() |
[15] |
V. Felli, E. Marchini and S. Terracini, On Schrödinger operators with multipolar inversesquare potentials, J. Funct. Anal., 250 (2007), 265-316.
doi: 10.1016/j.jfa.2006.10.019.![]() ![]() ![]() |
[16] |
Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations, 260 (2016), 4180-4202.
doi: 10.1016/j.jde.2015.11.006.![]() ![]() ![]() |
[17] |
W. Kryszewki and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-472.
![]() ![]() |
[18] |
G. Li and J. Yang, Asymptotically linear elliptic systems, Commun. Part. Diffe. Equ., 29 (2004), 925-954.
doi: 10.1081/PDE-120037337.![]() ![]() ![]() |
[19] |
G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.
doi: 10.1142/S0219199702000853.![]() ![]() ![]() |
[20] |
P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
[21] |
A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.
doi: 10.1007/s00032-005-0047-8.![]() ![]() ![]() |
[22] |
D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations, 190 (2003), 524-538.
doi: 10.1016/S0022-0396(02)00178-X.![]() ![]() ![]() |
[23] |
B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in RN, Adv. Differential Equations, 5 (2000), 1445-1464.
![]() ![]() |
[24] |
D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005), 2909-2938.
doi: 10.1090/S0002-9947-04-03769-9.![]() ![]() ![]() |
[25] |
A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
[26] |
X. H. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwan J. Math., 18 (2014), 1957-1979.
doi: 10.11650/tjm.18.2014.3541.![]() ![]() ![]() |
[27] |
M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[28] |
M. B. Yang, W. X. Chen and Y. H. Ding, Solutions of a class of Hamiltonian elliptic systems in ${{\rm{\mathbb{R}}}^N}$, J. Math. Anal. Appl., 352 (2010), 338-349.
doi: 10.1016/j.jmaa.2009.07.052.![]() ![]() ![]() |
[29] |
J. Zhang, X. H. Tang and W. Zhang, Ground states for diffusion system with periodic and asymptotically periodic nonlinearity, Comput. Math. Appl., 71 (2016), 633-641.
doi: 10.1016/j.camwa.2015.12.031.![]() ![]() ![]() |
[30] |
J. Zhang, X. H. Tang and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95 (2014), 1-10.
doi: 10.1016/j.na.2013.07.027.![]() ![]() ![]() |
[31] |
J. Zhang, X. H. Tang and W. Zhang, Semiclassical solutions for a class of Schrödinger system with magnetic potentials, J. Math. Anal. Appl., 414 (2014), 357-371.
doi: 10.1016/j.jmaa.2013.12.060.![]() ![]() ![]() |
[32] |
J. Zhang, X. H. Tang and W. Zhang, On semiclassical ground state solutions for Hamiltonian elliptic systems, Appl. Anal., 94 (2015), 1380-1396.
doi: 10.1080/00036811.2014.931940.![]() ![]() ![]() |
[33] |
J. Zhang, W. Zhang and X. L. Xie, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal., 15 (2016), 599-622.
doi: 10.3934/cpaa.2016.15.599.![]() ![]() ![]() |
[34] |
F. K. Zhao and Y. H. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations, 249 (2010), 2964-2985.
doi: 10.1016/j.jde.2010.09.014.![]() ![]() ![]() |
[35] |
F. K. Zhao, L. G. Zhao and Y. H. Ding, Infinitly mang solutions for asymptotically linear periodic Hamiltonian system, ESAIM: Control, Optim. Calc. Vari., 16 (2010), 77-91.
doi: 10.1051/cocv:2008064.![]() ![]() ![]() |
[36] |
F. K. Zhao, L. G. Zhao and Y. H. Ding, Multiple solutions for asympototically linear elliptic systems, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 673-688.
doi: 10.1007/s00030-008-7080-6.![]() ![]() ![]() |
[37] |
F. K. Zhao, L. G. Zhao and Y. H. Ding, Multiple solution for a superlinear and periodic ellipic system on $\mathbb{R}^N$, Z. Angew. Math. Phys., 62 (2011), 495-511.
doi: 10.1007/s00033-010-0105-0.![]() ![]() ![]() |