Let $\log f'$ be an absolutely continuous and $f"/f'∈ L_{p}(S^{1}, d\ell)$ for some $p>1, $ where $\ell$ is Lebesgue measure. We show that there exists a subset of irrational numbers of unbounded type, such that for any element $\widehat{ρ}$ of this subset, the linear rotation $R_{\widehat{ρ}}$ and the shift $f_{t}=f+t\mod 1, $ $t∈ [0, 1)$ with rotation number $\widehat{ρ}, $ are absolutely continuously conjugate. We also introduce a certain Zygmund-type condition depending on a parameter $γ$, and prove that in the case $γ>\frac{1}{2}$ there exists a subset of irrational numbers of unbounded type, such that every circle diffeomorphism satisfying the corresponding Zygmund condition is absolutely continuously conjugate to the linear rotation provided its rotation number belongs to the above set. Moreover, in the case of $γ> 1, $ we show that the conjugacy is $C^{1}$-smooth.
Citation: |
V. I. Arnol'd
, Small denominators: Ⅰ. Mappings from the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961)
, 21-86.
![]() ![]() |
|
W. de Melo
and S. van Strien
, A structure theorem in one-dimensional dynamics, Ann. Math., 129 (1989)
, 519-546.
doi: 10.2307/1971516.![]() ![]() ![]() |
|
R. Durrett, Probability Theory and Examples Second edition. Duxbury Press, Belmont, CA, 1996.
doi: 10.1017/CBO9780511779398.![]() ![]() ![]() |
|
J. Hawkins
and K. Schmidt
, On $C^{2}$-diffeomorphisms of the circle which are of type $Ⅲ_{1}$, Invent. Math., 66 (1982)
, 511-518.
doi: 10.1007/BF01389227.![]() ![]() ![]() |
|
M. Herman
, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979)
, 5-233.
doi: 10.1007/BF02684798.![]() ![]() ![]() |
|
J. Hu
and D. Sullivan
, Topological conjugacy of circle diffeomorphisms, Ergodic Theory Dynam. Systems, 17 (1997)
, 173-186.
doi: 10.1017/S0143385797061002.![]() ![]() ![]() |
|
F. John
and L. Nirenberg
, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961)
, 415-426.
doi: 10.1002/cpa.3160140317.![]() ![]() ![]() |
|
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
|
Y. Katznelson
and D. Ornstein
, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989)
, 643-680.
doi: 10.1017/S0143385700005277.![]() ![]() ![]() |
|
Y. Katznelson
and D. Ornstein
, The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989)
, 681-690.
doi: 10.1017/S0143385700005289.![]() ![]() ![]() |
|
K. M. Khanin
and Ya. G. Sinai
, A new proof of M. Herman's theorem, Commun. Math. Phys., 112 (1987)
, 89-101.
doi: 10.1007/BF01217681.![]() ![]() ![]() |
|
K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russ. Math. Surv. , 44 (1989), 69-99, translation of Usp. Mat. Nauk. , 44 (1989), 57-82.
doi: 10.1007/s00222-009-0200-z.![]() ![]() ![]() |
|
K. M. Khanin
and A. Yu. Teplinsky
, Herman's theory revisited, Invent. Math., 178 (2009)
, 333-344.
doi: 10.1007/s00222-009-0200-z.![]() ![]() ![]() |
|
J. Moser
, A rapid convergent iteration method and non-linear differential equations. Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966)
, 499-535.
![]() ![]() |
|
E. M. Stein, Singular Integrals and Differentaibility Properties of Functions, Princeton University Press, Princeton, N. J. , 1970.
![]() ![]() |
|
D. Sullivan
, Bounds, quadratic differentials and renormalization conjectures, American Mathematical Society Centennial Publications, (Providence, RI, 1988), Amer. Math. Soc., Providence, RI, 2 (1992)
, 417-466.
![]() ![]() |
|
G. Świątek
, Rational rotation number for maps of the circle, Commun. Math. Phys., 119 (1988)
, 109-128.
doi: 10.1007/BF01218263.![]() ![]() ![]() |
|
A. Teplinsky
, On cross-ratio distortion and Schwartz derivative, Nonlinearity, 21 (2008)
, 2777-2783.
doi: 10.1088/0951-7715/21/12/003.![]() ![]() ![]() |
|
M. Weiss
and A. Zygmund
, A note on smooth functions, Indag. Math., 21 (1959)
, 52-58.
![]() ![]() |
|
J. C. Yoccoz
, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup., 17 (1984)
, 333-359.
doi: 10.24033/asens.1475.![]() ![]() ![]() |
|
A. Zygmund, Trigonometric Series Third edition, Cambridge University Press, 2002.
![]() ![]() |