September  2017, 37(9): 4729-4751. doi: 10.3934/dcds.2017203

On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors

Department of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  December 2016 Revised  April 2017 Published  June 2017

A semilinear Timoshenko-Coleman-Gurtin system is studied. The system describes a Timoshenko beam coupled with a temperature with Coleman-Gurtin law. Under some assumptions on nonlinear damping terms and nonlinear source terms, we establish the global well-posedness of the system. The main result is the long-time dynamics of the system. By using the methods developed by Chueshov and Lasiecka, we get the quasi-stability property of the system and obtain the existence of a global attractor which has finite fractal dimension. Result on exponential attractors of the system is also proved.

Citation: Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203
References:
[1]

F. Alabau-Boussouria, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 643-669.  doi: 10.1007/s00030-007-5033-0.  Google Scholar

[2]

D. S. Almeida JúniorJ. E. Muñoz Rivera and M. L Santos, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci., 36 (2013), 1965-1976.  doi: 10.1002/mma.2741.  Google Scholar

[3]

F. Ammar-KhodjaS. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., 327 (2007), 525-538.  doi: 10.1016/j.jmaa.2006.04.016.  Google Scholar

[4]

F. Ammar-KhodjaA. BenabdallahJ. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[5]

A. R. A. Barbosa and T. F. Ma, long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.  Google Scholar

[6]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos CavalcantiF. A. Falcão NascimentoI. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189-1206.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[8]

W. CharlesJ. A. SorianoF. A. Falcão Nascimento and J. H. Rodrigues, Decay rates for Bresse system with arbitrary nonlinear localized damping, J. Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping in Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183 pp. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[11]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations Springer Verlag, 2010. doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[12]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differential Equations, 257 (2014), 523-548.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[13]

L. H. FatoriM. A. Jorge Silva and V. Narciso, Quasi-stability property and attractors for a semilinear Timoshenko system, Discrete Conti. Dyn. Sys., 36 (2016), 6117-6132.  doi: 10.3934/dcds.2016067.  Google Scholar

[14]

L. H. FatoriR. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law, Appl. Math. Comput., 228 (2014), 128-140.  doi: 10.1016/j.amc.2013.11.054.  Google Scholar

[15]

L. H. FatoriR. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type Ⅲ, Asymp. Anal., 86 (2014), 227-247.   Google Scholar

[16]

B. Feng and X. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.  Google Scholar

[17]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[18]

C. GiorgiA. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differ. Equ. Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.  Google Scholar

[19]

C. Giorgi and V. Pata, Stability of abstract linear thermoelastic systems with memory, Math. Models Methods Appl. Sci., 11 (2001), 627-644.  doi: 10.1142/S0218202501001021.  Google Scholar

[20]

M. Grasselli and V. Pata, Uniform attractors ofnonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (eds. A. Lorenzi and B. Rus), (2000), 155–178, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002.  Google Scholar

[21]

M. GrasselliV. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam, Discrete Conti. Dyn. Sys., 10 (2004), 337-348.  doi: 10.3934/dcds.2004.10.337.  Google Scholar

[22]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[23]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.  Google Scholar

[24]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, preprint, arXiv: 1511.06786. Google Scholar

[25]

S. A. Messaoudi and M. I. Mustafa, On the Internal and Boundary Stabilization of Timoshenko Beams, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.  Google Scholar

[26]

S. A. Messaoudi and A. Soufyane, Boundary stabilization of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.  doi: 10.1016/j.na.2006.08.039.  Google Scholar

[27]

S. A. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475.  doi: 10.1016/j.jmaa.2009.06.064.  Google Scholar

[28]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ, J. Math. Anal. Appl., 348 (2008), 298-307.  doi: 10.1016/j.jmaa.2008.07.036.  Google Scholar

[29]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type Ⅲ, Adv. Differ. Equ., 14 (2009), 375-400.   Google Scholar

[30]

M. I. Mustafa and S. A. Messaoudi, General energy decay rates for a weakly damped Timoshenko system, J. Dyna. Control Sys., 16 (2010), 211-226.  doi: 10.1007/s10883-010-9090-z.  Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[32]

C. A. RaposoJ. FerreiraM. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Let., 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[33]

J. C. Robinson, Infinite-Dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractor, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[34]

M. L. SantosD. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[35]

M. L. Santos and D. S. Almeida Júnior, On Timoshenko-type systems with type Ⅲ thermoelasticity: Asymptotic behavior, J. Math. Anal. Appl., 448 (2017), 650-671.  doi: 10.1016/j.jmaa.2016.10.074.  Google Scholar

[36]

A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Sér. I Math., 328 (1999), 731-734.  doi: 10.1016/S0764-4442(99)80244-4.  Google Scholar

[37]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal.: Real World Appl., 10 (2009), 1016-1020.  doi: 10.1016/j.nonrwa.2007.11.019.  Google Scholar

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68 Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[39]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philos. Mag., 41 (1921), 744-746.   Google Scholar

[40]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free, Int. J. Control, 78 (2005), 286-297.  doi: 10.1080/00207170500095148.  Google Scholar

[41]

G. Q. Xu and S. P. Yung, Exponential decay rate for a Timoshenko beam with boundary damping, J. Optim. Theory Appl., 123 (2004), 669-693.  doi: 10.1007/s10957-004-5728-x.  Google Scholar

show all references

References:
[1]

F. Alabau-Boussouria, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 643-669.  doi: 10.1007/s00030-007-5033-0.  Google Scholar

[2]

D. S. Almeida JúniorJ. E. Muñoz Rivera and M. L Santos, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci., 36 (2013), 1965-1976.  doi: 10.1002/mma.2741.  Google Scholar

[3]

F. Ammar-KhodjaS. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., 327 (2007), 525-538.  doi: 10.1016/j.jmaa.2006.04.016.  Google Scholar

[4]

F. Ammar-KhodjaA. BenabdallahJ. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[5]

A. R. A. Barbosa and T. F. Ma, long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.  Google Scholar

[6]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos CavalcantiF. A. Falcão NascimentoI. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189-1206.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[8]

W. CharlesJ. A. SorianoF. A. Falcão Nascimento and J. H. Rodrigues, Decay rates for Bresse system with arbitrary nonlinear localized damping, J. Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.  Google Scholar

[9]

I. D. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping in Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183 pp. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[11]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations Springer Verlag, 2010. doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[12]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differential Equations, 257 (2014), 523-548.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[13]

L. H. FatoriM. A. Jorge Silva and V. Narciso, Quasi-stability property and attractors for a semilinear Timoshenko system, Discrete Conti. Dyn. Sys., 36 (2016), 6117-6132.  doi: 10.3934/dcds.2016067.  Google Scholar

[14]

L. H. FatoriR. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law, Appl. Math. Comput., 228 (2014), 128-140.  doi: 10.1016/j.amc.2013.11.054.  Google Scholar

[15]

L. H. FatoriR. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type Ⅲ, Asymp. Anal., 86 (2014), 227-247.   Google Scholar

[16]

B. Feng and X. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.  Google Scholar

[17]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[18]

C. GiorgiA. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differ. Equ. Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.  Google Scholar

[19]

C. Giorgi and V. Pata, Stability of abstract linear thermoelastic systems with memory, Math. Models Methods Appl. Sci., 11 (2001), 627-644.  doi: 10.1142/S0218202501001021.  Google Scholar

[20]

M. Grasselli and V. Pata, Uniform attractors ofnonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (eds. A. Lorenzi and B. Rus), (2000), 155–178, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002.  Google Scholar

[21]

M. GrasselliV. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam, Discrete Conti. Dyn. Sys., 10 (2004), 337-348.  doi: 10.3934/dcds.2004.10.337.  Google Scholar

[22]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[23]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.  Google Scholar

[24]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, preprint, arXiv: 1511.06786. Google Scholar

[25]

S. A. Messaoudi and M. I. Mustafa, On the Internal and Boundary Stabilization of Timoshenko Beams, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.  Google Scholar

[26]

S. A. Messaoudi and A. Soufyane, Boundary stabilization of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.  doi: 10.1016/j.na.2006.08.039.  Google Scholar

[27]

S. A. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475.  doi: 10.1016/j.jmaa.2009.06.064.  Google Scholar

[28]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ, J. Math. Anal. Appl., 348 (2008), 298-307.  doi: 10.1016/j.jmaa.2008.07.036.  Google Scholar

[29]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type Ⅲ, Adv. Differ. Equ., 14 (2009), 375-400.   Google Scholar

[30]

M. I. Mustafa and S. A. Messaoudi, General energy decay rates for a weakly damped Timoshenko system, J. Dyna. Control Sys., 16 (2010), 211-226.  doi: 10.1007/s10883-010-9090-z.  Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[32]

C. A. RaposoJ. FerreiraM. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Let., 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[33]

J. C. Robinson, Infinite-Dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractor, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[34]

M. L. SantosD. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[35]

M. L. Santos and D. S. Almeida Júnior, On Timoshenko-type systems with type Ⅲ thermoelasticity: Asymptotic behavior, J. Math. Anal. Appl., 448 (2017), 650-671.  doi: 10.1016/j.jmaa.2016.10.074.  Google Scholar

[36]

A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Sér. I Math., 328 (1999), 731-734.  doi: 10.1016/S0764-4442(99)80244-4.  Google Scholar

[37]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal.: Real World Appl., 10 (2009), 1016-1020.  doi: 10.1016/j.nonrwa.2007.11.019.  Google Scholar

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68 Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[39]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philos. Mag., 41 (1921), 744-746.   Google Scholar

[40]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free, Int. J. Control, 78 (2005), 286-297.  doi: 10.1080/00207170500095148.  Google Scholar

[41]

G. Q. Xu and S. P. Yung, Exponential decay rate for a Timoshenko beam with boundary damping, J. Optim. Theory Appl., 123 (2004), 669-693.  doi: 10.1007/s10957-004-5728-x.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[5]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (138)
  • HTML views (75)
  • Cited by (5)

Other articles
by authors

[Back to Top]