-
Previous Article
Infimum of the metric entropy of volume preserving Anosov systems
- DCDS Home
- This Issue
-
Next Article
On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors
Entropy of diffeomorphisms of line
Mathematics and Science College, Shanghai Normal University, Shanghai 200433, China |
For diffeomorphisms of line, we set up the identities between their length growth rate and their entropy. Then, we prove that there is $C^0$-open and $C^r$-dense subset $\mathcal{U}$ of $\text{Diff}^r (\mathbb{R})$ with bounded first derivative, $r=1,2,\cdots$, $+\infty$, such that the entropy map with respect to strong $C^0$-topology is continuous on $\mathcal{U}$; moreover, for any $f \in \mathcal{U}$, if it is uniformly expanding or $h(f)=0$, then the entropy map is locally constant at $f$.
Also, we construct two examples:
1. there exists open subset $\mathcal{U}$ of $\text{Diff}^{\infty} (\mathbb{R})$ such that for any $f \in \mathcal{U}$, the entropy map with respect to strong $C^{\infty}$-topology, is not locally constant at $f$.
2. there exists $f \in \text{Diff}^{\infty}(\mathbb{R})$ such that the entropy map with respect to strong $C^{\infty}$-topology, is neither lower semi-continuous nor upper semi-continuous at $f$.
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity (A Global Geometric and Probabilistic Perspective), Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. |
[2] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. of Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[3] |
B. He, Entropy of diffeomorphisms with unbounded derivatives, In preparing. |
[4] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems, 1342 (1988), Springer Lecture Note in Mathematics, 465-563.
doi: 10.1007/BFb0082847. |
[5] |
M. Misiurewicz and W. Szlenk,
Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.
|
[6] |
S. Newhouse,
Continuity properties of entropy, Ann. of Math., 129 (1989), 215-235.
doi: 10.2307/1971492. |
[7] |
R. Saghin and J. Yang,
Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows, Israel J. Math., 215 (2016), 857-875.
doi: 10.1007/s11856-016-1396-4. |
[8] |
P. Walters,
Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics, Vol. 458. Springer-Verlag, Berlin-New York, 1975. |
[9] |
Y. Yomdin,
Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.
doi: 10.1007/BF02766215. |
show all references
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity (A Global Geometric and Probabilistic Perspective), Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. |
[2] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. of Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[3] |
B. He, Entropy of diffeomorphisms with unbounded derivatives, In preparing. |
[4] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems, 1342 (1988), Springer Lecture Note in Mathematics, 465-563.
doi: 10.1007/BFb0082847. |
[5] |
M. Misiurewicz and W. Szlenk,
Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.
|
[6] |
S. Newhouse,
Continuity properties of entropy, Ann. of Math., 129 (1989), 215-235.
doi: 10.2307/1971492. |
[7] |
R. Saghin and J. Yang,
Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows, Israel J. Math., 215 (2016), 857-875.
doi: 10.1007/s11856-016-1396-4. |
[8] |
P. Walters,
Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics, Vol. 458. Springer-Verlag, Berlin-New York, 1975. |
[9] |
Y. Yomdin,
Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.
doi: 10.1007/BF02766215. |
[1] |
N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 |
[2] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[3] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[4] |
Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789 |
[5] |
O. Goubet, N. Maaroufi. Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1253-1267. doi: 10.3934/cpaa.2012.11.1253 |
[6] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[7] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[8] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[9] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[10] |
Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731 |
[11] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[12] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[13] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
[14] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[15] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[16] |
Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195 |
[17] |
Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469 |
[18] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[19] |
Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288 |
[20] |
Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]