-
Previous Article
Infimum of the metric entropy of volume preserving Anosov systems
- DCDS Home
- This Issue
-
Next Article
On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors
Entropy of diffeomorphisms of line
Mathematics and Science College, Shanghai Normal University, Shanghai 200433, China |
For diffeomorphisms of line, we set up the identities between their length growth rate and their entropy. Then, we prove that there is $C^0$-open and $C^r$-dense subset $\mathcal{U}$ of $\text{Diff}^r (\mathbb{R})$ with bounded first derivative, $r=1,2,\cdots$, $+\infty$, such that the entropy map with respect to strong $C^0$-topology is continuous on $\mathcal{U}$; moreover, for any $f \in \mathcal{U}$, if it is uniformly expanding or $h(f)=0$, then the entropy map is locally constant at $f$.
Also, we construct two examples:
1. there exists open subset $\mathcal{U}$ of $\text{Diff}^{\infty} (\mathbb{R})$ such that for any $f \in \mathcal{U}$, the entropy map with respect to strong $C^{\infty}$-topology, is not locally constant at $f$.
2. there exists $f \in \text{Diff}^{\infty}(\mathbb{R})$ such that the entropy map with respect to strong $C^{\infty}$-topology, is neither lower semi-continuous nor upper semi-continuous at $f$.
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity (A Global Geometric and Probabilistic Perspective), Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. |
[2] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. of Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[3] |
B. He, Entropy of diffeomorphisms with unbounded derivatives, In preparing. Google Scholar |
[4] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems, 1342 (1988), Springer Lecture Note in Mathematics, 465-563.
doi: 10.1007/BFb0082847. |
[5] |
M. Misiurewicz and W. Szlenk,
Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.
|
[6] |
S. Newhouse,
Continuity properties of entropy, Ann. of Math., 129 (1989), 215-235.
doi: 10.2307/1971492. |
[7] |
R. Saghin and J. Yang,
Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows, Israel J. Math., 215 (2016), 857-875.
doi: 10.1007/s11856-016-1396-4. |
[8] |
P. Walters,
Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics, Vol. 458. Springer-Verlag, Berlin-New York, 1975. |
[9] |
Y. Yomdin,
Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.
doi: 10.1007/BF02766215. |
show all references
References:
[1] |
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity (A Global Geometric and Probabilistic Perspective), Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005. |
[2] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. of Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[3] |
B. He, Entropy of diffeomorphisms with unbounded derivatives, In preparing. Google Scholar |
[4] |
J. Milnor and W. Thurston,
On iterated maps of the interval, Dynamical Systems, 1342 (1988), Springer Lecture Note in Mathematics, 465-563.
doi: 10.1007/BFb0082847. |
[5] |
M. Misiurewicz and W. Szlenk,
Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.
|
[6] |
S. Newhouse,
Continuity properties of entropy, Ann. of Math., 129 (1989), 215-235.
doi: 10.2307/1971492. |
[7] |
R. Saghin and J. Yang,
Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows, Israel J. Math., 215 (2016), 857-875.
doi: 10.1007/s11856-016-1396-4. |
[8] |
P. Walters,
Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics, Vol. 458. Springer-Verlag, Berlin-New York, 1975. |
[9] |
Y. Yomdin,
Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.
doi: 10.1007/BF02766215. |
[1] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[2] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021017 |
[3] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[4] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[5] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[6] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[7] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[8] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[9] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[10] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[11] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[12] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[13] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[14] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[15] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[16] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[17] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[18] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[19] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[20] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]