\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure

  • * Corresponding author: Kyungkeun Kang

    * Corresponding author: Kyungkeun Kang

Bum Ja Jin's work is supported by NRF-2014R1A1A3A04049515 and Kyungkeun Kang's work was partially supported by NRF-2014R1A2A1A11051161 and NRF20151009350

Abstract Full Text(HTML) Related Papers Cited by
  • We prove a Caccioppoli type inequality for the solution of a parabolic system related to the nonlinear Stokes problem. Using the method of Caccioppoli type inequality, we also establish the existence of weak solutions satisfying a local energy inequality without pressure for the non-Newtonian Navier-Stokes equations.

    Mathematics Subject Classification: Primary: 76A05, 76D03; Secondary: 76D05, 76D07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Amman , Stability of the rest state of viscous incompressible fluid, Arch. Rat. Mech. Anal., 126 (1994) , 231-242.  doi: 10.1007/BF00375643.
      H.-O. Bae  and  J.-B. Jin , Regularity of Non-Newtonian fluids, J. Math. Fluid Mech., 16 (2014) , 225-241.  doi: 10.1007/s00021-013-0149-y.
      H. Beirão da Veiga , On the regularity of flows with Ladyzhenskaya Shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math., 58 (2005) , 552-577.  doi: 10.1002/cpa.20036.
      H. Beirão da Veiga , On some boundary value problems for incompressible viscous flows with Shear dependent viscosity, Progress in Nonlinear Differentail Equations, 63 (2005) , 23-32.  doi: 10.1007/3-7643-7384-9_3.
      H. Beirão da Veiga , P. Kaplický  and  M. Ružička , Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 13 (2011) , 387-404.  doi: 10.1007/s00021-010-0025-y.
      H. Bellout , F. Bloom  and  J. Nečas , Young Measure-Valued Solutions for Non-Newtonian Incompressible Fluids, Comm. in PDE, 19 (1994) , 1763-1803.  doi: 10.1080/03605309408821073.
      L. C. Berselli , L. Diening  and  M. Ružička , Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech., 12 (2010) , 101-132.  doi: 10.1007/s00021-008-0277-y.
      D. Bothe  and  J. Prüss , Lp-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007) , 379-421.  doi: 10.1137/060663635.
      M. Buliček , F. Ettwein , P. Kaplický  and  D. Pražák , On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010) , 1995-2010.  doi: 10.1002/mma.1314.
      H. J. Choe  and  M. Yang , Hausdorff measure of the singular set in the incompressible magnetohydrodynamic equations, Comm. Math. phys., 336 (2015) , 171-198.  doi: 10.1007/s00220-015-2307-y.
      L. Diening  and  M. Ružička , Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005) , 413-450.  doi: 10.1007/s00021-004-0124-8.
      L. Diening , M. Ruzicka  and  J. Wolf , Existence of weak solutions for unsteady motions of generalized newtonian fluids, Ann. Sc. Norm. Super. Pisa cl. Sci. (5), 9 (2010) , 1-46. 
      M. Fuchs  and  G. A. Seregin , A global nonlinear evolution problem for generalized Newtonian fluids: Local initial regularity of the strong solution, Comput. Math. Appl., 53 (2007) , 509-520.  doi: 10.1016/j.camwa.2006.02.039.
      M. Fuchs and G. A. Seregin, Existence of global solutions for a parabolic system related to the nonlinear Stokes problem, Zap. Nauchn. Sem. S. -Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 348 (2007), Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 38,254–271,306; translation in J. Math. Sci. (N. Y. ) 152 (2008), 769–779. doi: 10.1007/s10958-008-9088-1.
      M. Fuchs  and  G. Zhang , Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model, calc. Var. Partial Differential Equations, 44 (2012) , 271-295.  doi: 10.1007/s00526-011-0434-7.
      M. Giaquinta  and  G. Modica , Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 330 (1982) , 173-214. 
      B. J. Jin , On the caccioppoli inequality of the unsteady Stokes system, Int. J. Numer. Anal. Model. Ser. B, 4 (2013) , 215-223. 
      O. A. Ladyženskaya , New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Trudy Mat. Inst. Steklov., 102 (1967) , 85-104. 
      O. A. Ladyženskaya , Modifications of the Navier-Stokes equations for large gradients of the velocities, Zapiski Naukhnych Seminarov LOMI, 7 (1968) , 126-154. 
      O. A. Ladyženskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Beach, New York, 1969.
      J. L. Lions, Quelques Methodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
      J. Málek, J. Nečas, M. Rokyta and M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical computation, 13. chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1.
      J. Málek , J. Nečas  and  M. Ružička , On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci., 3 (1993) , 35-63.  doi: 10.1142/S0218202593000047.
      J. Málek , J. Nečas  and  M. Ružička , On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations, 6 (2001) , 257-302. 
      J. Málek , D. Pražák  and  M. Steinhauer , On the Existence and Regularity of solutions for degenerate power-law fluids, Differential Integral Equations, 19 (2006) , 449-462. 
      J. Wolf , Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9 (2007) , 104-138.  doi: 10.1007/s00021-006-0219-5.
      J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, in Advances in mathematical fluid mechanics, Springer, Berlin, (2010), 613–630.
      J. Wolf , On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 61 (2015) , 149-171.  doi: 10.1007/s11565-014-0203-6.
  • 加载中
SHARE

Article Metrics

HTML views(144) PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return