In this paper we are concerned with a multi-dimensional Bresse system, in a bounded domain, where the memory-type damping is acting on a portion of the boundary. We establish a general decay results, from which the usual exponential and polynomial decay rates are only special cases.
Citation: |
[1] |
F. Alabau Boussouira, D. S. Almeida Júnior and J. E. M. Rivera, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.
doi: 10.1016/j.jmaa.2010.07.046.![]() ![]() ![]() |
[2] |
D. S. Almeida Júnior, M. L. Santos and A. Soufyane, Asymptotic behavior to Bresse system with past history, Quarterly of Applied Mathematics, 73 (2015), 23-54.
doi: 10.1090/S0033-569X-2014-01382-4.![]() ![]() ![]() |
[3] |
J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition on the boundary, Nonlin. Anal., 61 (2005), 351-372.
doi: 10.1016/j.na.2004.11.014.![]() ![]() ![]() |
[4] |
J. A. C. Bresse,
Cours mécanique Appliquée, Mallet Bachelier, Paris, 1859.
![]() |
[5] |
M. M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary conditions of memory type, Differential Integral Equations, 18 (2005), 583-600.
![]() ![]() |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.
doi: 10.1016/S0096-3003(03)00284-4.![]() ![]() ![]() |
[7] |
L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.
doi: 10.1016/j.aml.2011.09.067.![]() ![]() ![]() |
[8] |
L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA Jour. Appl. Math, 75 (2010), 881-904.
doi: 10.1093/imamat/hxq038.![]() ![]() ![]() |
[9] |
L. H. Fatori, J. E. M. Rivera and J. A. S. Soriano, Bresse system with indefinite damping, Jour. Math. Anal. Appl., 387 (2012), 284-290.
doi: 10.1016/j.jmaa.2011.08.072.![]() ![]() ![]() |
[10] |
A. J. R. Feitosa, M. Milla Miranda and M. L. Oliveira, Nonlinear boundary stabilization for Timoshenko beam system, Jour. Math. Anal. Appl., 428 (2015), 194-216.
doi: 10.1016/j.jmaa.2015.02.019.![]() ![]() ![]() |
[11] |
J. Ferreira, D. C. Pereira, C. A. Rapaso and M. L. Santos, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlin. Anal., 54 (2003), 959-976.
doi: 10.1016/S0362-546X(03)00121-4.![]() ![]() ![]() |
[12] |
A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Meth. Appl. Sci., 38 (2015), 2389-2402.
doi: 10.1002/mma.3228.![]() ![]() ![]() |
[13] |
J. R. Kang, General decay for Kirchhoff plates with a boundary condition of memory type, Boundary Value Problems, 2012 (2012), 1-11.
doi: 10.1186/1687-2770-2012-129.![]() ![]() ![]() |
[14] |
A. Khemmoudj and T. Hamadouche, Boundary stabilization of a Bresse-type system, Math. Meth. Appl. Sci., 39 (2016), 3282-3293.
doi: 10.1002/mma.3773.![]() ![]() ![]() |
[15] |
J. E. Lagnese, G. Leugering and J. P. G. Schmidt,
Modelling Analysis and Control of Dynamic Elastic Multi-Link Structures Birkhäuser Boston, Inc., Boston, MA, 1994.
doi: 10.1007/978-1-4612-0273-8.![]() ![]() ![]() |
[16] |
Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6.![]() ![]() ![]() |
[17] |
S. A. Messaoudi and A. Soufyane, Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlin. Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039.![]() ![]() ![]() |
[18] |
S. A. Messaoudi and A. Soufyane, General decay of solutions of a wave equation with a boundary control of memory type, Nonlin. Anal., RWA, 11 (2010), 2896-2904.
doi: 10.1016/j.nonrwa.2009.10.013.![]() ![]() ![]() |
[19] |
S. A. Messaoudi and M. I. Mustafa, Energy decay rates for a Timoshenko system with viscoelastic boundary conditions, Appl. Math. Comput., 218 (2012), 9125-9131.
doi: 10.1016/j.amc.2012.02.065.![]() ![]() ![]() |
[20] |
N. Noun and A. Wehbe, Stabilisation faible interne locale de systéme élastique de Bresse, English, with English and French summaries, C. R. Math. Acad. Sci. Paris, 350 (2012), 493-498.
doi: 10.1016/j.crma.2012.04.003.![]() ![]() ![]() |
[21] |
P. Pei, M. A. Rammaha and D. Toundykov, Local and global well-posedness of semilinear Reissner Mindlin Timoshenko plate equations, Nonlinear Analysis: Theory, Methods and Applications, 105 (2014), 62-85.
doi: 10.1016/j.na.2014.03.024.![]() ![]() ![]() |
[22] |
H. Portillo Oquendo, J. E. Munoz Rivera and M. L. Santos, Asymptotic behavior to a von Kármán plate with boundary memory conditions, Nonlinear Analysis, 62 (2005), 1183-1205.
doi: 10.1016/j.na.2005.04.025.![]() ![]() ![]() |
[23] |
M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory conditions at the boundary, Electron. Jour. Differ. Equ., 73 (2001), 1-11.
![]() ![]() |
[24] |
M. L. Santos, Decay rates for solutions of a Timoshenko system with a memory condition at the boundary, Abstr. Appl. Anal., 7 (2002), 531-546.
doi: 10.1155/S1085337502204133.![]() ![]() ![]() |
[25] |
M. L. Santos and A. Soufyane, General decay to a von Karman plate system with memory boundary conditions, Diff. Int. Equ., 24 (2011), 69-81.
![]() ![]() |
[26] |
M. L. Santos and C. C. S. Tavares, On the Kirchhoff plates equations with thermal effects and memory boundary conditions, Appl. Math. Comput., 213 (2009), 25-38.
doi: 10.1016/j.amc.2009.03.009.![]() ![]() ![]() |