We obtain weighted $L^2$ Strichartz estimates for Schrödinger equations $i\partial_tu+(-\Delta)^{a/2}u=F(x, t)$, $u(x, 0)=f(x)$, of general orders $a>1$ with radial data $f, F$ with respect to the spatial variable $x$, whenever the weight is in a Morrey-Campanato type class. This is done by making use of a useful property of maximal functions of the weights together with frequency-localized estimates which follow from using bilinear interpolation and some estimates of Bessel functions. As consequences, we give an affirmative answer to a question posed in [
Citation: |
[1] |
J. A. Barceló, J. M. Bennett, A. Carbery, A. Ruiz and M. C. Vilela, Strichartz inequalities with weights in Morrey-Campanato classes, Collect. Math., 61 (2010), 49-56.
doi: 10.1007/BF03191225.![]() ![]() ![]() |
[2] |
J. A. Barcelo, J. M. Bennett, A. Ruiz and M. C. Vilela, Local smoothing for Kato potentials in three dimensions, Math. Nachr., 282 (2009), 1391-1405.
doi: 10.1002/mana.200610808.![]() ![]() ![]() |
[3] |
J. Bergh and J. Löfström,
Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.
![]() ![]() |
[4] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. Amer. Math. Soc., 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
[5] |
T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529.![]() ![]() ![]() |
[6] |
M. Chae, S. Hong and S. Lee, Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders, Discrete Contin. Dyn, Syst., 29 (2011), 909-928.
doi: 10.3934/dcds.2011.29.909.![]() ![]() ![]() |
[7] |
S. Chanillo and E. Sawyer, Unique continuation for $Δ+v$ and the C. Fefferman-Phong class, Trans. Amer. Math. Soc., 318 (1990), 275-300.
doi: 10.2307/2001239.![]() ![]() ![]() |
[8] |
C.-H. Cho, Y. Koh and I. Seo, On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications, Discrete Contin. Dyn. Syst., 36 (2016), 1905-1926.
doi: 10.3934/dcds.2016.36.1905.![]() ![]() ![]() |
[9] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970.![]() ![]() ![]() |
[10] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.
doi: 10.1006/jfan.2000.3687.![]() ![]() ![]() |
[11] |
R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249-254.
doi: 10.1090/S0002-9939-1980-0565349-8.![]() ![]() ![]() |
[12] |
E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation, J. Differential equations., 245 (2008), 1945-1974.
doi: 10.1016/j.jde.2008.07.009.![]() ![]() ![]() |
[13] |
P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schrödinger equation with a potential in $L_t^rL_x^s$, Math. Ann., 333 (2005), 271-290.
doi: 10.1007/s00208-005-0672-0.![]() ![]() ![]() |
[14] |
D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.
doi: 10.1515/FORM.2011.009.![]() ![]() ![]() |
[15] |
D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.
doi: 10.1142/S0219891605000361.![]() ![]() ![]() |
[16] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéare, 2 (1985), 309-327.
doi: 10.1016/S0294-1449(16)30399-7.![]() ![]() ![]() |
[17] |
L. Grafakos,
Classical Fourier analysis, Springer, New York, 2008.
![]() ![]() |
[18] |
L. Grafakos,
Modern Fourier Analysis, Springer, New York, 2008.
doi: 10.1007/978-0-387-09434-2.![]() ![]() ![]() |
[19] |
Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6.![]() ![]() ![]() |
[20] |
V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Lett. A, 210 (1996), 77-84.
doi: 10.1016/0375-9601(95)00752-0.![]() ![]() ![]() |
[21] |
V. Karpman and A. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.
doi: 10.1016/S0167-2789(00)00078-6.![]() ![]() ![]() |
[22] |
T. Kato, An Lq, r -theory for nonlinear Schrödinger equations, in Spectral and scattering theory
and applications, Adv. Stud. Pure Math. , Math. Soc. Japan, Tokyo, 23 (1994), 223–238.
![]() ![]() |
[23] |
T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.
doi: 10.1142/S0129055X89000171.![]() ![]() ![]() |
[24] |
Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.
doi: 10.1016/j.jmaa.2011.09.039.![]() ![]() ![]() |
[25] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
[26] |
Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160.
doi: 10.1016/j.jmaa.2010.06.019.![]() ![]() ![]() |
[27] |
Y. Koh and I. Seo, On weighted $L^2$ estimates for solutions of the wave equation, Proc. Amer. Math. Soc., 144 (2016), 3047-3061.
doi: 10.1090/proc/12951.![]() ![]() ![]() |
[28] |
Y. Koh and I. Seo, Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces, Comm. Partial Differential Equations, 40 (2015), 1815-1830.
doi: 10.1080/03605302.2015.1048551.![]() ![]() ![]() |
[29] |
Y. Koh and I. Seo, Inhomogeneous Strichartz estimates for Schrödiner's equations, J. Math. Anal. Appl., 442 (2016), 715-725.
doi: 10.1016/j.jmaa.2016.04.061.![]() ![]() ![]() |
[30] |
T. S. Kopaliani, Littlewood-Paley theorem on $L^{p(t)}(\mathbb{R}^n)$ spaces, (Ukrainian) Ukrain. Mat.
Zh. , 60 (2008), 1709–1715; translation in Ukrainian Math. J., 60 (2008), 2006–2014.
doi: 10.1007/s11253-009-0186-0.![]() ![]() ![]() |
[31] |
D. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^p$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.
doi: 10.2307/1998156.![]() ![]() ![]() |
[32] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[33] |
S. Lee and I. Seo, A note on unique continuation for the Schrödinger equation, J. Math. Anal. Appl., 389 (2012), 461-468.
doi: 10.1016/j.jmaa.2011.11.067.![]() ![]() ![]() |
[34] |
S. Lee and I. Seo, On inhomogeneous Strichartz estimates for the Schrödinger equation, Rev. Mat. Iberoam., 30 (2014), 711-726.
doi: 10.4171/RMI/797.![]() ![]() ![]() |
[35] |
C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A, 306 (1968), 291-296.
doi: 10.1098/rspa.1968.0151.![]() ![]() ![]() |
[36] |
V. Naibo and A. Stefanov, On some Schrödinger and wave equations with time dependent potentials, Math. Ann., 334 (2006), 325-338.
doi: 10.1007/s00208-005-0720-9.![]() ![]() ![]() |
[37] |
A. Ruiz and L. Vega, On local regularity of Schrödinger equations, Internat. Math. Res.
Notices, (1993), 13-27.
doi: 10.1155/S1073792893000029.![]() ![]() ![]() |
[38] |
A. Ruiz and L. Vega, Local regularity of solutions to wave equations with time-dependent potentials, Duke Math. J., 76 (1994), 913-940.
doi: 10.1215/S0012-7094-94-07636-9.![]() ![]() ![]() |
[39] |
I. Seo, Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces, Indiana Univ. Math. J., 60 (2011), 1203-1227.
doi: 10.1512/iumj.2011.60.4824.![]() ![]() ![]() |
[40] |
I. Seo, Global unique continuation from a half space for the Schrödinger equation, J. Funct. Anal., 266 (2014), 85-98.
doi: 10.1016/j.jfa.2013.09.025.![]() ![]() ![]() |
[41] |
I. Seo, From resolvent estimates to unique continuation for the Schrödinger equation, Trans. Amer. Math. Soc., 368 (2016), 8755-8784.
doi: 10.1090/tran/6635.![]() ![]() ![]() |
[42] |
S. Shao, Sharp linear and bilinear restriction estimate for paraboloids in the cylinderically symmetric case, Rev. Mat. Iberoam., 25 (2009), 1127-1168.
doi: 10.4171/RMI/591.![]() ![]() ![]() |
[43] |
E. M. Stein,
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 1993.
![]() ![]() |
[44] |
R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1.![]() ![]() ![]() |
[45] |
M. Sugimoto, Global smoothing properties of generalized Schrödinger equations, J. Anal. Math., 76 (1998), 191-204.
doi: 10.1007/BF02786935.![]() ![]() ![]() |
[46] |
T. Tao,
Nonlinear Dispersive Equations: Local and Global Analysis, CBMS 106, eds: AMS, 2006.
doi: 10.1090/cbms/106.![]() ![]() ![]() |
[47] |
H. Triebel,
Interpolation Theory, Function Spaces, Differential Operator, North-Holland, New York, 1978.
![]() ![]() |
[48] |
M. C. Vilela, Regularity of solutions to the free Schrödinger equation with radial initial data, Illinois J. Math., 45 (2001), 361-370.
![]() ![]() |
[49] |
M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.
doi: 10.1090/S0002-9947-06-04099-2.![]() ![]() ![]() |
[50] |
G. N. Watson,
A Treatise on the Theory of Bessel Functions The Macmillan Company, New York, 1944.
![]() ![]() |
The region of