This paper is devoted to the study of the initial-boundary value problem for density-dependent incompressible nematic liquid crystal flows with vacuum in a bounded smooth domain of $\mathbb{R}^2$. The system consists of the Navier-Stokes equations, describing the evolution of an incompressible viscous fluid, coupled with various kinematic transport equations for the molecular orientations. Assuming the initial data are sufficiently regular and satisfy a natural compatibility condition, the existence and uniqueness are established for the global strong solution if the initial data are small. We make use of a critical Sobolev inequality of logarithmic type to improve the regularity of the solution. Our result relaxes the assumption in all previous work that the initial density needs to be bounded away from zero.
Citation: |
S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov,
Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990.
![]() ![]() |
|
H. Brezis
and S. Wainger
, A note on limiting cases of Sobolev embedding and convolution
inequalities, Comm. Partial Differential Equations, 5 (1980)
, 773-789.
doi: 10.1080/03605308008820154.![]() ![]() ![]() |
|
L. Caffarelli
, R. Kohn
and L. Nirenberg
, Partial regularity of suitable weak solutions of
Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982)
, 771-831.
doi: 10.1002/cpa.3160350604.![]() ![]() ![]() |
|
K. C. Chang
, W. Y. Ding
and R. Ye
, Finite-time blow-up of the heat flow of harmonic maps
from surfaces, J. Differential Geom., 36 (1992)
, 507-515.
doi: 10.4310/jdg/1214448751.![]() ![]() ![]() |
|
H. Y. Choe
and H. Kim
, Strong solutions of the Navier-Stokes equations for nonhomogeneous
incompressible fluids, Comm. Partial Differential Equations, 28 (2003)
, 1183-1201.
doi: 10.1081/PDE-120021191.![]() ![]() ![]() |
|
B. Climent-Ezquerra
, F. Guillén-González
and M. Rojas-Medar
, Reproductivity for a nematic
liquid crystal model, Z. angew. Math. Phys., 57 (2006)
, 984-998.
doi: 10.1007/s00033-005-0038-1.![]() ![]() ![]() |
|
R. Danchin
, Density-dependent incompressible fluids in bounded domains, J. Math. Fluid Mech., 8 (2006)
, 333-381.
doi: 10.1007/s00021-004-0147-1.![]() ![]() ![]() |
|
R. Danchin
and P. B. Mucha
, Incompressible flows with piecewise constant density, Arch. Rat. Mech. Anal., 207 (2013)
, 991-1023.
doi: 10.1007/s00205-012-0586-4.![]() ![]() ![]() |
|
B. Desjardins
, Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations, Differential and Integral Equations, 10 (1997)
, 577-586.
![]() ![]() |
|
J. Ericksen
, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961)
, 22-34.
doi: 10.1122/1.548883.![]() ![]() ![]() |
|
J. Ericksen, Equilibrium theory for liquid crystals, in: G. Brown (Ed.), Advances in Liquid Crystals, Vol. 2, Academic Press, New York, (1976), 233–398.
doi: 10.1016/B978-0-12-025002-8.50012-9.![]() ![]() |
|
J. Ericksen
, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987)
, 381-392.
![]() |
|
G. P. Galdi,
An Introduction to the Mathematical Theory of Navier-Stokes Equations, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8.![]() ![]() ![]() |
|
M. Hong
, Global existence of solutions of the simplified Ericksen-Leslie system in dimension
two, Calc. Var. Partial Differential Equations, 40 (2011)
, 15-36.
doi: 10.1007/s00526-010-0331-5.![]() ![]() ![]() |
|
X. Hu
and D. Wang
, Global solution to the three-dimensional incompressible flow of liquid
crystals, Comm. Math. Phys., 296 (2010)
, 861-880.
doi: 10.1007/s00220-010-1017-8.![]() ![]() ![]() |
|
X. Huang
and Y. Wang
, Global strong solution to the 2D nonhomogeneous imcompressible
MHD system, J. Diff. Equations, 254 (2013)
, 511-527.
doi: 10.1016/j.jde.2012.08.029.![]() ![]() ![]() |
|
F. Jiang
and Z. Tan
, Global weak solution to the flow of liquid crystals system, Math. Meth. Appl. Sci., 32 (2009)
, 2243-2266.
doi: 10.1002/mma.1132.![]() ![]() ![]() |
|
O. A. Ladyzhenskaya,
The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
![]() ![]() |
|
O. A. Ladyzhenskaya, N. A. Solonnikov and N. N. Ural'ceva,
Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
![]() ![]() |
|
F. M. Leslie, Theory of flow phenomena in liquid crystals, in: G. Brown (Ed.), Advances in Liquid Crystals, Academic Press, New York, 4 (1979), 1–81.
doi: 10.1016/B978-0-12-025004-2.50008-9.![]() ![]() |
|
X. Li
and D. Wang
, Global strong solution to the density-dependent incompressible flow of
liquid crystals, Trans. Amer. Math. Soc., 367 (2015)
, 2301-2338.
doi: 10.1090/S0002-9947-2014-05924-2.![]() ![]() ![]() |
|
F. H. Lin
, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow
phenomena, Comm. Pure Appl. Math., 42 (1989)
, 789-814.
doi: 10.1002/cpa.3160420605.![]() ![]() ![]() |
|
F. H. Lin
, Existence of solutions for the Ericksen-Leslie system, Arch. Rat. Mech. Anal., 154 (2000)
, 135-156.
doi: 10.1007/s002050000102.![]() ![]() ![]() |
|
F. H. Lin
and C. Liu
, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995)
, 501-537.
doi: 10.1002/cpa.3160480503.![]() ![]() ![]() |
|
F. H. Lin
and C. Liu
, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete and Continuous Dynamic Systems, 2 (1996)
, 1-22.
![]() ![]() |
|
F. H. Lin
, J. Lin
and C. Wang
, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010)
, 297-336.
doi: 10.1007/s00205-009-0278-x.![]() ![]() ![]() |
|
C. Liu
, Dynamic theory for incompressible smectic-A liquid crystals, Discrete and Continuous Dynamic Systems, 6 (2000)
, 591-608.
doi: 10.3934/dcds.2000.6.591.![]() ![]() ![]() |
|
C. Liu
and N. J. Walkington
, Approximation of liquid crystal flow, SIAM J. Numer. Anal., 37 (2000)
, 725-741.
doi: 10.1137/S0036142997327282.![]() ![]() ![]() |
|
X. Liu
and Z. Zhang
, Existence of the flow of liquid crystals system, Chinese Ann. Math., 30 (2009)
, 1-20.
![]() ![]() |
|
M. Paicu
, P. Zhang
and Z. Zhang
, Global unique solvability of inhomogeneous Navier-Stokes
equations with bounded density, Comm. Partial Differential Equations, 38 (2013)
, 1208-1234.
doi: 10.1080/03605302.2013.780079.![]() ![]() ![]() |
|
S. Shkoller
, Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Partial Diffrential Equations, 27 (2002)
, 1103-1137.
doi: 10.1081/PDE-120004895.![]() ![]() ![]() |
|
C. Wang
, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with
rough initial data, Arch. Ration. Mech. Anal., 200 (2011)
, 1-19.
doi: 10.1007/s00205-010-0343-5.![]() ![]() ![]() |
|
D. Wang
and C. Yu
, Global weak solution and large-time behavior for the compressible flow
of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012)
, 881-915.
doi: 10.1007/s00205-011-0488-x.![]() ![]() ![]() |
|
H. Wen
and S. Ding
, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Analysis: Real World Applications, 12 (2011)
, 1510-1531.
doi: 10.1016/j.nonrwa.2010.10.010.![]() ![]() ![]() |