We propose a definition of average tracing of finite pseudo-orbits and show that in the case of this definition measure center has the same property as nonwandering set for the classical shadowing property. We also show that the average shadowing property trivializes in the case of mean equicontinuous systems, and that it implies distributional chaos when measure center is nondegenerate.
Citation: |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, Recent advances. North-Holland Mathematical Library, 52. North-Holland Publishing Co. , Amsterdam, 1994. | |
M. L. Blank , Metric properties of $\varepsilon $-trajectories of dynamical systems with stochastic behaviour, Ergodic Theory and Dynamical Systems, 8 (1988) , 365-378. doi: 10.1017/S014338570000451X. | |
M. L. Blank, Deterministic properties of stochastically perturbed dynamical systems, Teor. Veroyatnost. i Primenen., 33 (1988), 659-671 (in Russian); English transl.: Theory Probab. Appl., 33 (1988), 612-623. doi: 10.1137/1133095. | |
R. Bowen, Topological entropy and axiom A, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. ⅩⅣ, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R. I., 23-41. | |
A. Fakhari and F. H. Gane , On shadowing: Ordinary and ergodic, J. Math. Anal. Appl., 364 (2010) , 151-155. doi: 10.1016/j.jmaa.2009.11.004. | |
M. Kulczycki , D. Kwietniak and P. Oprocha , On almost specification and average shadowing properties, Fund. Math., 224 (2014) , 241-278. doi: 10.4064/fm224-3-4. | |
J. Li , S. Tu and X. Ye , Mean equicontinuity and mean sensitivity, Ergodic Theory and Dynamical Systems, 35 (2015) , 2587-2612. doi: 10.1017/etds.2014.41. | |
P. Oprocha , Coherent lists and chaotic sets, Discrete Contin. Dynam. Systems, 31 (2011) , 797-825. doi: 10.3934/dcds.2011.31.797. | |
P. Oprocha , Specification properties and dense distributional chaos, Discrete Contin. Dynam. Systems, 17 (2007) , 821-833. doi: 10.3934/dcds.2007.17.821. | |
P. Oprocha , Shadowing, thick sets and the Ramsey property, Ergodic Theory and Dynamical Systems, 36 (2016) , 1582-1595. doi: 10.1017/etds.2014.130. | |
P. Oprocha and M. Štefánková , Specification property and distributional chaos almost everywhere, Proc. Amer. Math. Soc., 136 (2008) , 3931-3940. doi: 10.1090/S0002-9939-08-09602-0. | |
C.-E. Pfister and W. G. Sullivan , On the topological entropy of saturated sets, Ergodic Theory and Dynamical Systems, 27 (2007) , 929-956. doi: 10.1017/S0143385706000824. | |
D. Richeson and J. Wiseman , Chain recurrence rates and topological entropy, Topology Appl., 156 (2008) , 251-261. doi: 10.1016/j.topol.2008.07.005. | |
K. Sakai , Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math., 30 (2000) , 1129-1137. doi: 10.1216/rmjm/1021477263. | |
B. Schweizer and J. Smítal , Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994) , 737-754. doi: 10.1090/S0002-9947-1994-1227094-X. | |
D. Thompson , Irregular sets, the β-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012) , 5395-5414. doi: 10.1090/S0002-9947-2012-05540-1. | |
L. Wang, X. Wang, F. Lei and H. Liu, Asymptotic average shadowing property, almost specification property and distributional chaos Mod. Phys. Lett. B, 30 (2016), 1650001 [9 pages]. doi: 10.1142/S0217984916500019. | |
X. Wu , P. Oprocha and G. Chen , On various definitions of shadowing with average error in tracing, Nonlinearity, 29 (2016) , 1942-1972. doi: 10.1088/0951-7715/29/7/1942. | |
X. Wu, L. Wang and J. Liang, The chain properties and average shadowing property of iterated function systems Qual. Theory Dyn. Syst. , DOI 10.1007/s12346-016-0220-1 (online publication). doi: 10.1007/s12346-016-0220-1. |