We consider Hölder continuous cocycles over hyperbolic dynamical systems with values in the group of invertible bounded linear operators on a Banach space. We show that two fiber bunched cocycles are Hölder continuously cohomologous if and only if they have Hölder conjugate periodic data. The fiber bunching condition means that non-conformality of the cocycle is dominated by the expansion and contraction in the base system. We show that this condition can be established based on the periodic data of a cocycle. We also establish Hölder continuity of a measurable conjugacy between a fiber bunched cocycle and one with values in a set which is compact in strong operator topology.
Citation: |
A. Avila , J. Santamaria and M. Viana , Holonomy invariance: Rough regularity and applications to Lyapunov exponents, Astérisque, 358 (2013) , 13-74. | |
L. Backes , Rigidity of fiber bunched cocycles, Bul. Brazilian Math. Soc., 46 (2015) , 163-179. doi: 10.1007/s00574-015-0089-7. | |
L. Backes and A. Kocsard , Cohomology of dominated diffeomorphism-valued cocycles over hyperbolic systems, Ergodic Theory Dynam. Systems, 36 (2016) , 1703-1722. doi: 10.1017/etds.2014.149. | |
G. Grabarnik and M. Guysinsky , Livšic theorem for Banach rings, Discrete and Continuous Dynamical Systems, 37 (2017) , 4379-4390. doi: 10.3934/dcds.2017187. | |
B. Kalinin , Livšic theorem for matrix cocycles, Annals of Math., 173 (2011) , 1025-1042. doi: 10.4007/annals.2011.173.2.11. | |
B. Kalinin and V. Sadovskaya , Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, 167 (2013) , 167-188. doi: 10.1007/s10711-012-9808-z. | |
B. Kalinin and V. Sadovskaya, Periodic approximation of Lyapunov exponents for Banach cocycles, To appear in Ergodic Theory Dynam. Systems. | |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54 Cambridge University Press, 1995. doi: 10.1017/CBO9780511809187. | |
A. Katok and V. Nitica, Rigidity in Higher Rank Abelian Group Actions: Volume 1, Introduction and Cocycle Problem, Cambridge University Press, 2011. doi: 10.1017/CBO9780511803550. | |
A. N. Livšic , Homology properties of Y-systems, Math. Zametki, 10 (1971) , 555-564. | |
A. N. Livšic , Cohomology of dynamical systems, Math. USSR Izvestija, 36 (1972) , 1296-1320. | |
R. de la Llave and A. Windsor , Livšic theorem for non-commutative groups including groups of diffeomorphisms, and invariant geometric structures, Ergodic Theory Dynam. Systems, 30 (2010) , 1055-1100. doi: 10.1017/S014338570900039X. | |
V. Nitica and A. Török , Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices, Duke Math. J., 79 (1995) , 751-810. doi: 10.1215/S0012-7094-95-07920-4. | |
V. Nitica and A. Török , Regularity of the transfer map for cohomologous cocycles, Ergodic Theory Dynam. Systems, 18 (1998) , 1187-1209. doi: 10.1017/S0143385798117480. | |
W. Parry , The Livšic periodic point theorem for non-Abelian cocycles, Ergodic Theory Dynam. Systems, 19 (1999) , 687-701. doi: 10.1017/S0143385799146789. | |
M. Pollicott and C. P. Walkden , Livšic theorems for connected Lie groups, Trans. Amer. Math. Soc., 353 (2001) , 2879-2895. doi: 10.1090/S0002-9947-01-02708-8. | |
V. Sadovskaya , Cohomology of GL(2, $\mathbb{R} $)-valued cocycles over hyperbolic systems, Discrete and Continuous Dynamical Systems, 33 (2013) , 2085-2104. doi: 10.3934/dcds.2013.33.2085. | |
V. Sadovskaya , Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory Dynam. Systems, 35 (2015) , 2669-2688. doi: 10.1017/etds.2014.43. | |
K. Schmidt , Remarks on Livšic theory for non-Abelian cocycles, Ergodic Theory Dynam. Systems, 19 (1999) , 703-721. doi: 10.1017/S0143385799146790. | |
M. Viana , Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Math., 167 (2008) , 643-680. doi: 10.4007/annals.2008.167.643. |