We consider Hölder continuous cocycles over hyperbolic dynamical systems with values in the group of invertible bounded linear operators on a Banach space. We show that two fiber bunched cocycles are Hölder continuously cohomologous if and only if they have Hölder conjugate periodic data. The fiber bunching condition means that non-conformality of the cocycle is dominated by the expansion and contraction in the base system. We show that this condition can be established based on the periodic data of a cocycle. We also establish Hölder continuity of a measurable conjugacy between a fiber bunched cocycle and one with values in a set which is compact in strong operator topology.
Citation: |
A. Avila
, J. Santamaria
and M. Viana
, Holonomy invariance: Rough regularity and applications to Lyapunov exponents, Astérisque, 358 (2013)
, 13-74.
![]() ![]() |
|
L. Backes
, Rigidity of fiber bunched cocycles, Bul. Brazilian Math. Soc., 46 (2015)
, 163-179.
doi: 10.1007/s00574-015-0089-7.![]() ![]() ![]() |
|
L. Backes
and A. Kocsard
, Cohomology of dominated diffeomorphism-valued cocycles over
hyperbolic systems, Ergodic Theory Dynam. Systems, 36 (2016)
, 1703-1722.
doi: 10.1017/etds.2014.149.![]() ![]() ![]() |
|
G. Grabarnik
and M. Guysinsky
, Livšic theorem for Banach rings, Discrete and Continuous Dynamical Systems, 37 (2017)
, 4379-4390.
doi: 10.3934/dcds.2017187.![]() ![]() ![]() |
|
B. Kalinin
, Livšic theorem for matrix cocycles, Annals of Math., 173 (2011)
, 1025-1042.
doi: 10.4007/annals.2011.173.2.11.![]() ![]() ![]() |
|
B. Kalinin
and V. Sadovskaya
, Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, 167 (2013)
, 167-188.
doi: 10.1007/s10711-012-9808-z.![]() ![]() ![]() |
|
B. Kalinin and V. Sadovskaya, Periodic approximation of Lyapunov exponents for Banach cocycles, To appear in Ergodic Theory Dynam. Systems.
![]() |
|
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54 Cambridge University Press, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
|
A. Katok and V. Nitica, Rigidity in Higher Rank Abelian Group Actions: Volume 1, Introduction and Cocycle Problem, Cambridge University Press, 2011.
doi: 10.1017/CBO9780511803550.![]() ![]() ![]() |
|
A. N. Livšic
, Homology properties of Y-systems, Math. Zametki, 10 (1971)
, 555-564.
![]() ![]() |
|
A. N. Livšic
, Cohomology of dynamical systems, Math. USSR Izvestija, 36 (1972)
, 1296-1320.
![]() ![]() |
|
R. de la Llave
and A. Windsor
, Livšic theorem for non-commutative groups including groups
of diffeomorphisms, and invariant geometric structures, Ergodic Theory Dynam. Systems, 30 (2010)
, 1055-1100.
doi: 10.1017/S014338570900039X.![]() ![]() ![]() |
|
V. Nitica
and A. Török
, Cohomology of dynamical systems and rigidity of partially hyperbolic
actions of higher-rank lattices, Duke Math. J., 79 (1995)
, 751-810.
doi: 10.1215/S0012-7094-95-07920-4.![]() ![]() ![]() |
|
V. Nitica
and A. Török
, Regularity of the transfer map for cohomologous cocycles, Ergodic Theory Dynam. Systems, 18 (1998)
, 1187-1209.
doi: 10.1017/S0143385798117480.![]() ![]() ![]() |
|
W. Parry
, The Livšic periodic point theorem for non-Abelian cocycles, Ergodic Theory Dynam. Systems, 19 (1999)
, 687-701.
doi: 10.1017/S0143385799146789.![]() ![]() ![]() |
|
M. Pollicott
and C. P. Walkden
, Livšic theorems for connected Lie groups, Trans. Amer. Math. Soc., 353 (2001)
, 2879-2895.
doi: 10.1090/S0002-9947-01-02708-8.![]() ![]() ![]() |
|
V. Sadovskaya
, Cohomology of GL(2, $\mathbb{R} $)-valued cocycles over hyperbolic systems, Discrete and Continuous Dynamical Systems, 33 (2013)
, 2085-2104.
doi: 10.3934/dcds.2013.33.2085.![]() ![]() ![]() |
|
V. Sadovskaya
, Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory Dynam. Systems, 35 (2015)
, 2669-2688.
doi: 10.1017/etds.2014.43.![]() ![]() ![]() |
|
K. Schmidt
, Remarks on Livšic theory for non-Abelian cocycles, Ergodic Theory Dynam. Systems, 19 (1999)
, 703-721.
doi: 10.1017/S0143385799146790.![]() ![]() ![]() |
|
M. Viana
, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Math., 167 (2008)
, 643-680.
doi: 10.4007/annals.2008.167.643.![]() ![]() ![]() |