This paper is dedicated to studying the following Schrödinger-Poisson problem
$\left\{ \begin{array}{ll} -\triangle u+V(x)u+φ u=f(u), \ \ \ \ x∈ \mathbb{R}^{3},\\ -\triangle φ=u^2, \ \ \ \ x∈ \mathbb{R}^{3}, \end{array} \right. $
where $V(x)$ is weakly differentiable and $f∈ \mathcal{C}(\mathbb{R}, \mathbb{R})$. By introducing some new tricks, we prove the above problem admits a ground state solution of Nehari-Pohozaev type and a least energy solution under mild assumptions on $V$ and $f$. Our results generalize and improve the ones in [D. Ruiz, J. Funct. Anal. 237 (2006) 655-674], [J.J. Sun, S.W. Ma, J. Differential Equations 260 (2016) 2119-2149] and some related literature.
Citation: |
N. Ackermann
and T. Weth
, Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting, Commun. Contemp. Math., 7 (2005)
, 269-298.
doi: 10.1142/S0219199705001763.![]() ![]() ![]() |
|
A. Ambrosetti
and D. Ruiz
, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008)
, 391-404.
doi: 10.1142/S021919970800282X.![]() ![]() ![]() |
|
A. Azzollini
and A. Pomponio
, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008)
, 90-108.
doi: 10.1016/j.jmaa.2008.03.057.![]() ![]() ![]() |
|
V. Benci
and D. Fortunato
, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998)
, 283-293.
doi: 10.12775/TMNA.1998.019.![]() ![]() ![]() |
|
V. Benci
and D. Fortunato
, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002)
, 409-420.
doi: 10.1142/S0129055X02001168.![]() ![]() ![]() |
|
R. Benguria
, H. Brezis
and E. H. Lieb
, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981)
, 167-180.
doi: 10.1007/BF01942059.![]() ![]() ![]() |
|
I. Catto
and P. L. Lions
, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part 1: A necessary and sufficient condition for the stability of general molecular system, Comm. Partial Differential Equations, 17 (1992)
, 1051-1110.
doi: 10.1080/03605309208820878.![]() ![]() ![]() |
|
G. Cerami
and G. Vaira
, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010)
, 521-543.
doi: 10.1016/j.jde.2009.06.017.![]() ![]() ![]() |
|
S. T. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$
Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp.
doi: 10.1007/s00033-016-0695-2.![]() ![]() ![]() |
|
S. T. Chen
and X. H. Tang
, Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017)
, 363-383.
doi: 10.11650/tjm/7784.![]() ![]() |
|
G. M. Coclite
, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003)
, 417-423.
![]() ![]() |
|
T. D'Aprile
and D. Mugnai
, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. -A, 134 (2004)
, 893-906.
doi: 10.1017/S030821050000353X.![]() ![]() ![]() |
|
T. D'Aprile
and D. Mugnai
, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004)
, 307-322.
![]() ![]() |
|
Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2007.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
|
X. M. He
, Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011)
, 869-889.
doi: 10.1007/s00033-011-0120-9.![]() ![]() ![]() |
|
X. M. He and W. M. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702, 19pp.
doi: 10.1063/1.3683156.![]() ![]() ![]() |
|
L. R. Huang
, E. M. Rocha
and J. Q. Chen
, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differential Equations, 255 (2013)
, 2463-2483.
doi: 10.1016/j.jde.2013.06.022.![]() ![]() ![]() |
|
W. N. Huang
and X. H. Tang
, Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 415 (2014)
, 791-802.
doi: 10.1016/j.jmaa.2014.02.015.![]() ![]() ![]() |
|
W. N. Huang
and X. H. Tang
, Semiclassical solutions for the nonlinear Schrödinger-Maxwell equations with critical nonlinearity, Taiwan. J. Math., 18 (2014)
, 1203-1217.
doi: 10.11650/tjm.18.2014.3993.![]() ![]() ![]() |
|
L. Jeanjean
, On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on $\mathbb{R}^N$, Proc. Roy. Soc. Edinburgh Sect. -A, 129 (1999)
, 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
|
L. Jeanjean
and J. Toland
, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. Ⅰ Math., 327 (1998)
, 23-28.
doi: 10.1016/S0764-4442(98)80097-9.![]() ![]() ![]() |
|
E. H. Lieb
, Thomas-Fermi and related theories and molecules, Rev. Modern Phys., 53 (1981)
, 603-641.
doi: 10.1103/RevModPhys.53.603.![]() ![]() ![]() |
|
E. H. Lieb
, Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983)
, 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
|
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
|
P. L. Lions
, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987)
, 33-97.
doi: 10.1007/BF01205672.![]() ![]() ![]() |
|
P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.
doi: 10.1007/978-3-7091-6961-2.![]() ![]() ![]() |
|
D. Ruiz
, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006)
, 655-674.
doi: 10.1016/j.jfa.2006.04.005.![]() ![]() ![]() |
|
D. Ruiz
, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010)
, 349-368.
doi: 10.1007/s00205-010-0299-5.![]() ![]() ![]() |
|
J. Seok
, On nonlinear Schrödinger-Poisson equations with general potentials, J. Math. Anal. Appl., 401 (2013)
, 672-681.
doi: 10.1016/j.jmaa.2012.12.054.![]() ![]() ![]() |
|
M. Struwe
, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984)
, 511-517.
doi: 10.1007/BF01174186.![]() ![]() ![]() |
|
J. J. Sun
and S. W. Ma
, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016)
, 2119-2149.
doi: 10.1016/j.jde.2015.09.057.![]() ![]() ![]() |
|
X. H. Tang
and B. T. Cheng
, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016)
, 2384-2402.
doi: 10.1016/j.jde.2016.04.032.![]() ![]() ![]() |
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
|
L. G. Zhao
and F. K. Zhao
, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008)
, 155-169.
doi: 10.1016/j.jmaa.2008.04.053.![]() ![]() ![]() |
|
L. G. Zhao
and F. K. Zhao
, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009)
, 2150-2164.
doi: 10.1016/j.na.2008.02.116.![]() ![]() ![]() |