We consider the following fully parabolic Keller-Segel system
$\left\{\begin{array}{ll}u_t=\nabla · (D(u) \nabla u-S(u) \nabla v)+u(1-u^γ),&x ∈ Ω,t>0, \\v_t=Δ v-v+u,&x ∈ Ω,t>0, \\\frac{\partial u}{\partial ν}=\frac{\partial v}{\partial ν}=0,&x∈\partial Ω,t>0\end{array}\right.$
over a multi-dimensional bounded domain $Ω \subset \mathbb R^N$, $N≥2$. Here $D(u)$ and $S(u)$ are smooth functions satisfying: $D(0)>0$, $D(u)≥ K_1u^{m_1}$ and $S(u)≤ K_2u^{m_2}$, $\forall u≥0$, for some constants $K_i∈\mathbb R^+$, $m_i∈\mathbb R$, $i=1, 2$. It is proved that, when the parameter pair $(m_1, m_2)$ lies in some specific regions, the system admits global classical solutions and they are uniformly bounded in time. We cover and extend [
Citation: |
Figure 1. An illustration of parameter regions for the global existence of (1.1) in the $m_1$-$m_2$ plane as $\gamma$ varies. For each pair of $(m_1,m_2)$ in the shaded region, (1.1) over bounded domain $\Omega\subset \mathbb R^N$, $N\geq2$, admits global bounded classical solutions. The slopes of $L_1(L^*_1)$ and $L_2(L^*_2)$ are 1 and the slope of $L_3(L^*_3)$ is $\frac{1}{2}$. Note that in the lower right plot, we use $\frac{1}{N}+\frac{2}{N+2}$, instead of $\frac{3N+2}{N(N+2)}$, for better illustration
Figure 2. An illustration of up-to-date summary results on global existence of the nonlinear diffusion system (1.1). For each pair of $(m_1,m_2)$ in the shaded region, (1.1) over bounded domain $\Omega\subset \mathbb R^N$, $N\geq2$, admits global bounded classical solutions. The slope of $L_1(L^*_1)$ is 1 and of $L^*_2$ is $\frac{1}{2}$; $L_4$ is the horizontal line $m_2=\gamma$
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126.
doi: 10.1007/978-3-663-11336-2_1.![]() ![]() ![]() |
|
N. Bellomo
, A. Bellouquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
X. Cao
, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014)
, 181-188.
doi: 10.1016/j.jmaa.2013.10.061.![]() ![]() ![]() |
|
T. Cieslak
and C. Stinner
, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012)
, 5832-5851.
doi: 10.1016/j.jde.2012.01.045.![]() ![]() ![]() |
|
T. Cieslak
and C. Stinner
, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015)
, 2080-2113.
doi: 10.1016/j.jde.2014.12.004.![]() ![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
D. Horstmann
, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅰ, Jahresber DMV, 105 (2003)
, 103-165.
![]() ![]() |
|
D. Horstmann
, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅱ, Jahresber DMV, 106 (2004)
, 51-69.
![]() ![]() |
|
S. Ishida
, K. Seki
and T. Yokota
, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014)
, 2993-3010.
doi: 10.1016/j.jde.2014.01.028.![]() ![]() ![]() |
|
S. Ishida
and T. Yokota
, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 2569-2596.
doi: 10.3934/dcdsb.2013.18.2569.![]() ![]() ![]() |
|
S. Ishida
and T. Yokota
, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252 (2012)
, 2469-2491.
doi: 10.1016/j.jde.2011.08.047.![]() ![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Inition of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Model for chemotaxis, J. Theoret. Biol., 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Traveling bands of chemotactic bacteria: A Theretical Analysis, J. Theoret. Biol., 30 (1971)
, 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
|
J. Lankeit
, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 1499-1527.
doi: 10.3934/dcdsb.2015.20.1499.![]() ![]() ![]() |
|
L. Nirenberg
, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20 (1966)
, 733-737.
![]() ![]() |
|
K. Painter
and T. Hillen
, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002)
, 501-543.
![]() ![]() |
|
C. S. Patlak
, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953)
, 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
|
Y. Sugiyama
and H. Kunii
, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006)
, 333-364.
doi: 10.1016/j.jde.2006.03.003.![]() ![]() ![]() |
|
Y. Tao
, L. Wang
and Z. Wang
, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 821-845.
doi: 10.3934/dcdsb.2013.18.821.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012)
, 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
|
L. Wang
, Y. Li
and C. Mu
, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014)
, 789-802.
doi: 10.3934/dcds.2014.34.789.![]() ![]() ![]() |
|
M. Winkler
, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002)
, 911-925.
doi: 10.1002/mma.319.![]() ![]() ![]() |
|
M. Winkler
, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010)
, 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
|
M. Winkler
, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010)
, 12-24.
doi: 10.1002/mma.1146.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
M. Winkler
, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014)
, 809-855.
doi: 10.1007/s00332-014-9205-x.![]() ![]() ![]() |
|
Q. Zhang
and Y. Li
, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015)
, 2473-2484.
doi: 10.1007/s00033-015-0532-z.![]() ![]() ![]() |
|
J. Zheng
, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl., 431 (2015)
, 867-888.
doi: 10.1016/j.jmaa.2015.05.071.![]() ![]() ![]() |
An illustration of parameter regions for the global existence of (1.1) in the
An illustration of up-to-date summary results on global existence of the nonlinear diffusion system (1.1). For each pair of