September  2017, 37(9): 5021-5036. doi: 10.3934/dcds.2017216

Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions

Department of Mathematics, Southwestern University of Finance and Economics, 555 Liutai Ave, Wenjiang, Chengdu, Sichuan 611130, China

* Corresponding author. QW acknowledges the support from National Natural Science Foundation of China (Grant No. 11501460). All authors thank the two anonymous referees for their helpful suggestions, which improve the presentation of this paper

Currently at Department of Mathematics, University of Central Florida, Orlando, USA. yfeng@knights.ucf.edu.

Received  June 2016 Revised  April 2017 Published  June 2017

We consider the following fully parabolic Keller-Segel system
$\left\{\begin{array}{ll}u_t=\nabla · (D(u) \nabla u-S(u) \nabla v)+u(1-u^γ),&x ∈ Ω,t>0, \\v_t=Δ v-v+u,&x ∈ Ω,t>0, \\\frac{\partial u}{\partial ν}=\frac{\partial v}{\partial ν}=0,&x∈\partial Ω,t>0\end{array}\right.$
over a multi-dimensional bounded domain
$Ω \subset \mathbb R^N$
,
$N≥2$
. Here
$D(u)$
and
$S(u)$
are smooth functions satisfying:
$D(0)>0$
,
$D(u)≥ K_1u^{m_1}$
and
$S(u)≤ K_2u^{m_2}$
,
$\forall u≥0$
, for some constants
$K_i∈\mathbb R^+$
,
$m_i∈\mathbb R$
,
$i=1, 2$
. It is proved that, when the parameter pair
$(m_1, m_2)$
lies in some specific regions, the system admits global classical solutions and they are uniformly bounded in time. We cover and extend [22,28], in particular when
$N≥3$
and
$γ≥1$
, and [3,29] when
$m_1>γ-\frac{2}{N}$
if
$γ∈(0, 1)$
or
$m_1>γ-\frac{4}{N+2}$
if
$γ∈[1, ∞)$
. Moreover, according to our results, the index
$\frac{2}{N}$
is, in contrast to the model without cellular growth, no longer critical to the global existence or collapse of this system.
Citation: Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[4]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[5]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[6]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅰ, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[8]

D. Horstmann, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅱ, Jahresber DMV, 106 (2004), 51-69.   Google Scholar

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[10]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.  doi: 10.3934/dcdsb.2013.18.2569.  Google Scholar

[11]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252 (2012), 2469-2491.  doi: 10.1016/j.jde.2011.08.047.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Inition of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A Theretical Analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[15]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[16]

L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733-737.   Google Scholar

[17]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.   Google Scholar

[18]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[19]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[20]

Y. TaoL. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[23]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.  doi: 10.1002/mma.319.  Google Scholar

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[25]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.  doi: 10.1002/mma.1146.  Google Scholar

[26]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[27]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[28]

Q. Zhang and Y. Li, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015), 2473-2484.  doi: 10.1007/s00033-015-0532-z.  Google Scholar

[29]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl., 431 (2015), 867-888.  doi: 10.1016/j.jmaa.2015.05.071.  Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, differential operators and nonlinear analysis, Teubner, Stuttgart, Leipzig, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[4]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[5]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[6]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅰ, Jahresber DMV, 105 (2003), 103-165.   Google Scholar

[8]

D. Horstmann, From 1970 until now: The Keller-Segel model in Chemotaxis and its consequences Ⅱ, Jahresber DMV, 106 (2004), 51-69.   Google Scholar

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[10]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.  doi: 10.3934/dcdsb.2013.18.2569.  Google Scholar

[11]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252 (2012), 2469-2491.  doi: 10.1016/j.jde.2011.08.047.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Inition of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A Theretical Analysis, J. Theoret. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[15]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[16]

L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733-737.   Google Scholar

[17]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.   Google Scholar

[18]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[19]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[20]

Y. TaoL. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[23]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.  doi: 10.1002/mma.319.  Google Scholar

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[25]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.  doi: 10.1002/mma.1146.  Google Scholar

[26]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[27]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[28]

Q. Zhang and Y. Li, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015), 2473-2484.  doi: 10.1007/s00033-015-0532-z.  Google Scholar

[29]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl., 431 (2015), 867-888.  doi: 10.1016/j.jmaa.2015.05.071.  Google Scholar

Figure 1.  An illustration of parameter regions for the global existence of (1.1) in the $m_1$-$m_2$ plane as $\gamma$ varies. For each pair of $(m_1,m_2)$ in the shaded region, (1.1) over bounded domain $\Omega\subset \mathbb R^N$, $N\geq2$, admits global bounded classical solutions. The slopes of $L_1(L^*_1)$ and $L_2(L^*_2)$ are 1 and the slope of $L_3(L^*_3)$ is $\frac{1}{2}$. Note that in the lower right plot, we use $\frac{1}{N}+\frac{2}{N+2}$, instead of $\frac{3N+2}{N(N+2)}$, for better illustration
Figure 2.  An illustration of up-to-date summary results on global existence of the nonlinear diffusion system (1.1). For each pair of $(m_1,m_2)$ in the shaded region, (1.1) over bounded domain $\Omega\subset \mathbb R^N$, $N\geq2$, admits global bounded classical solutions. The slope of $L_1(L^*_1)$ is 1 and of $L^*_2$ is $\frac{1}{2}$; $L_4$ is the horizontal line $m_2=\gamma$
[1]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[2]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[3]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[4]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[5]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[6]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[7]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[8]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[9]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[10]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[11]

Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147

[12]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018

[13]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[14]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[15]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[16]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[17]

E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461

[18]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[19]

Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901

[20]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (34)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]