October  2017, 37(10): 5085-5104. doi: 10.3934/dcds.2017220

On parabolic external maps

1. 

Departamento de Matemática Aplicada, Instituto de Matemática e Estatistica, Universidade de São Paulo, Rua do Matão 1010,05508-090 São Paulo -SP, Brazil

2. 

Department of Science, NSM, IMFUFA, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark

3. 

Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Handan Road 220, Shanghai, China 200433

* Corresponding author

Received  March 2016 Revised  April 2017 Published  June 2017

Fund Project: The first author has been supported by FAPESP via the process 2013/20480-7. The second author has been supported by the Danish Council for Independent Research | Natural Sciences via the grant DFF -4181-00502

We prove that any $C^{1+\text{BV}}$ degree d ≥ 2 circle covering $h$ having all periodic orbits weakly expanding, is conjugate by a $C^{1+\text{BV}}$ diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expanding circle coverings.

Citation: Luna Lomonaco, Carsten Lunde Petersen, Weixiao Shen. On parabolic external maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5085-5104. doi: 10.3934/dcds.2017220
References:
[1]

B. Branner and N. Fagella, Quasiconformal Surgery in Holomorphic Dynamics, Cambridge University Press, 2014. Google Scholar

[2]

G. Cui, Circle expanding maps and symmetric structures, Ergodic Theory and Dynamical Systems, 18 (1998), 831-842. doi: 10.1017/S0143385798117455. Google Scholar

[3]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Annales scientifiques de l'École normale supérieure, 18 (1985), 287-343. doi: 10.24033/asens.1491. Google Scholar

[4]

L. Lomonaco, Parabolic-like maps, Ergodic Theory and Dynamical Systems, 35 (2015), 2171-2197. doi: 10.1017/etds.2014.27. Google Scholar

[5]

J. Ma., On Evolution of a Class of Markov Maps, Undergraduate thesis (in Chinese), University of Science and Technology of China, 2007.Google Scholar

[6]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Communications in Mathematical Physics, 100 (1985), 495-524. doi: 10.1007/BF01217727. Google Scholar

[7]

M. MartensW. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real onedimensional dynamics, Acta Mathematica, 168 (1992), 273-318. doi: 10.1007/BF02392981. Google Scholar

[8]

W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, 1993. doi: 10.1007/BF02392981. Google Scholar

[9]

W. Rudin, Real and Complex Analysis, New York-Toronto, Ont. -London, 1966. Google Scholar

[10]

M. Shishikura, Bifurcation of parabolic fixed points, in The Mandelbrot set, theme and variations, London Mathematical Society Lecture Note Series, Cambridge University Press, 274 (2000), 325-363. Google Scholar

show all references

References:
[1]

B. Branner and N. Fagella, Quasiconformal Surgery in Holomorphic Dynamics, Cambridge University Press, 2014. Google Scholar

[2]

G. Cui, Circle expanding maps and symmetric structures, Ergodic Theory and Dynamical Systems, 18 (1998), 831-842. doi: 10.1017/S0143385798117455. Google Scholar

[3]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Annales scientifiques de l'École normale supérieure, 18 (1985), 287-343. doi: 10.24033/asens.1491. Google Scholar

[4]

L. Lomonaco, Parabolic-like maps, Ergodic Theory and Dynamical Systems, 35 (2015), 2171-2197. doi: 10.1017/etds.2014.27. Google Scholar

[5]

J. Ma., On Evolution of a Class of Markov Maps, Undergraduate thesis (in Chinese), University of Science and Technology of China, 2007.Google Scholar

[6]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Communications in Mathematical Physics, 100 (1985), 495-524. doi: 10.1007/BF01217727. Google Scholar

[7]

M. MartensW. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real onedimensional dynamics, Acta Mathematica, 168 (1992), 273-318. doi: 10.1007/BF02392981. Google Scholar

[8]

W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, 1993. doi: 10.1007/BF02392981. Google Scholar

[9]

W. Rudin, Real and Complex Analysis, New York-Toronto, Ont. -London, 1966. Google Scholar

[10]

M. Shishikura, Bifurcation of parabolic fixed points, in The Mandelbrot set, theme and variations, London Mathematical Society Lecture Note Series, Cambridge University Press, 274 (2000), 325-363. Google Scholar

Figure 1.  A map of the maps we consider. $\mathcal{F}_d^{1+\text{BV}}$ is the set of degree $d$ smooth covering $h:\mathcal{S}^1\to\mathcal{S}^1$ with $h\in C^{1+\text{BV}}$; $\mathcal{O}_d^{1+\text{BV}}$ is the set of maps $h\in\mathcal{F}_d^{1+\text{BV}}$ for which for every periodic point $p$ say of period $s$, there is a neighborhood $U(p)$ of $p$ such that for all $x\in U(p)\setminus \{p\}$ we have $Dh^s(x)>1$; while $\mathcal{M}_d^{1+\text{BV}}$ and $\mathcal{T}_d^{1+\text{BV}}$ are the class of respectively metrically and topologically expanding $h\in F_d^{1+\text{BV}}$. $\mathcal{F}_d$ is the class of real analytic degree $d$ circle coverings, $\mathcal{T}_d$ and $\mathcal{M}_d$ the set of respectively topologically and metrically expanding $h \in \mathcal{F}_d$, and $\mathcal{T}_{d,*}$ and $\mathcal{M}_{d,*}$ the set of respectively topologically and metrically expanding $h \in \mathcal{F}_d$ for which $\text{Par}(h) \neq \emptyset$. Also, $\mathcal{P}_d$ is the class of extenal maps and $\mathcal{P}_{d,*}$ the class of parabolic external maps. Finally, $\mathcal{H}_{d,1} =\{ h \in \mathcal{F}_d | \,\,h \sim_{qs} h_d (z)= \frac{z^d+(d-1)/(d+1)}{(d-1)z^d/(d+1)+1}\}$. By Corollary 2.2, $\mathcal{O}_d^{1+\text{BV}}=\mathcal{T}_d^{1+\text{BV}}$, and by Theorem 2.4, $\mathcal{M}_d\subset\mathcal{P}_d=\mathcal{T}_{d}$, $\mathcal{M}_{d,*}~\subset~\mathcal{P}_{d,*}~=~\mathcal{T}_{d,*}$ and $\mathcal{M}_{d,1}\subset\mathcal{P}_{d,1}=\mathcal{H}_{d,1}=\mathcal{T}_{d,1}$.
Figure 2.  A parabolic external map in $\mathcal{P}_{d,1}$.
Figure 3.  Construction
[1]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

[2]

Dyi-Shing Ou, Kenneth James Palmer. A constructive proof of the existence of a semi-conjugacy for a one dimensional map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 977-992. doi: 10.3934/dcdsb.2012.17.977

[3]

Plamen Stefanov, Gunther Uhlmann, Andras Vasy. On the stable recovery of a metric from the hyperbolic DN map with incomplete data. Inverse Problems & Imaging, 2016, 10 (4) : 1141-1147. doi: 10.3934/ipi.2016035

[4]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[5]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[6]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[7]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[8]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[9]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[10]

John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723

[11]

Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927

[12]

Alexandre N. Carvalho, Jan W. Cholewa. NLS-like equations in bounded domains: Parabolic approximation procedure. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 57-77. doi: 10.3934/dcdsb.2018005

[13]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[14]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[15]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[16]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[17]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[18]

Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-17. doi: 10.3934/dcdss.2020084

[19]

Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940

[20]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (26)
  • Cited by (0)

[Back to Top]