In this paper, we study the explosive solutions to a class of parbolic stochastic semilinear differential equations driven by a Lévy type noise. The sufficient conditions are presented to guarantee the existence of a unique positive solution of the stochastic partial differential equation under investigation. Moreover, we show that positive solutions will blow up in finite time in mean Lp-norm sense, provided that the initial data, the nonlinear term and the multiplicative noise satisfies some conditions. Several examples are presented to illustrate the theory. Finally, we establish a global existence theorem based on a Lyapunov functional and prove that a stochastic Allen-Cahn equation driven by Lévy noise has a global solution.
Citation: |
D. Applebaum, Lévy Processes and Stochastic Calculus 2nd edition, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
|
J. Bao
and C. Yuan
, Blow-up for stochastic reaction-diffusion equations with jumps, J. Theor Probab, 29 (2016)
, 617-631.
doi: 10.1007/s10959-014-0589-1.![]() ![]() ![]() |
|
J. F. Bonder
and P. Groisman
, Time-space white noise eliminates global solutions in reaction-diffusion equations, Physica D, 238 (2009)
, 209-215.
doi: 10.1016/j.physd.2008.09.005.![]() ![]() ![]() |
|
Z. Brźeniak
and J. Zabczyk
, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal, 32 (2010)
, 153-188.
doi: 10.1007/s11118-009-9149-1.![]() ![]() ![]() |
|
P.-L. Chow
, Explosive solutions of stochastic reaction-diffusion equations in mean Lp-norm, J. Differential Equations, 250 (2011)
, 2567-2580.
doi: 10.1016/j.jde.2010.11.008.![]() ![]() ![]() |
|
P.-L. Chow
and K. Liu
, Positivity and explosion in mean Lp-norm of stochastic functional parabolic equations of retarded type, Stoch. Proc. Appl, 122 (2012)
, 1709-1729.
doi: 10.1016/j.spa.2012.01.012.![]() ![]() ![]() |
|
P. -L. Chow, Stochastic Partial Differential Equations Second edition. Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
|
P.-L. Chow
, Unbounded positive solutions of nonlinear parabolic Itô equations, Commun. Stoch. Anal, 3 (2009)
, 211-222.
![]() ![]() |
|
G. Da Prato
and J. Zabczyk
, Non-explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations, 98 (1992)
, 181-195.
doi: 10.1016/0022-0396(92)90111-Y.![]() ![]() ![]() |
|
Z. Dong
, On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes, J. Theor. Probab, 21 (2008)
, 322-335.
doi: 10.1007/s10959-008-0143-0.![]() ![]() ![]() |
|
M. Dozzi
and J. A. López-Mimbela
, Finite-time blowup and existence of global positive solutions of a semi-linear SPDE, Stoch. Proc. Appl, 120 (2010)
, 767-776.
doi: 10.1016/j.spa.2009.12.003.![]() ![]() ![]() |
|
L. C. Evans, Partial Differential Equations 2nd edition, in Graduate Studies in Math., vol. 19, AMS, Providence, Rhode Island, 1998.
doi: 10.1090/gsm/019.![]() ![]() |
|
H. Fujita
, On the blowing up of solutions of the Cauchy problen for ut = ∆u + u1+α, J. Fac. Sci. Univ. Tokyo, Sect. 1, 13 (1966)
, 109-124.
![]() ![]() |
|
H. Fujita
, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math, AMS, 18 (1970)
, 105-113.
![]() ![]() |
|
V. A. Galaktionov
and J. L. Vá
, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst, 8 (2002)
, 399-433.
doi: 10.3934/dcds.2002.8.399.![]() ![]() ![]() |
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order 2nd edition, Springer-Verlag, New York, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
|
K. Hayakawa
, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad, 49 (1973)
, 503-505.
doi: 10.3792/pja/1195519254.![]() ![]() ![]() |
|
Y. Li
, X. Sun
and Y. Xie
, Fokker-Planck equations and maximal dissipativity for Kolmogorov operators for SPDE driven by Lévy noise, Potential Anal, 38 (2013)
, 381-396.
doi: 10.1007/s11118-012-9277-x.![]() ![]() ![]() |
|
G. Lv
and J. Duan
, Impacts of noise on a class of partial differential equations, J. Differential Equations, 258 (2015)
, 2196-2220.
doi: 10.1016/j.jde.2014.12.002.![]() ![]() ![]() |
|
C. Mueller
, Long time existence for the heat equation with a noise term, Probab. Theory Relat. Fields, 90 (1991)
, 505-517.
doi: 10.1007/BF01192141.![]() ![]() ![]() |
|
C. Mueller
, The critical parameter for the heat equation with a noise term to blow up in finite time, Ann. Probab, 25 (1997)
, 133-152.
doi: 10.1214/aop/1024404282.![]() ![]() ![]() |
|
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() ![]() |
|
M. Röckner
and T. Zhang
, Stochastic evolution equations of jump type: Existence, uniqueness and large deviation principles, Potential Anal, 26 (2007)
, 255-279.
doi: 10.1007/s11118-006-9035-z.![]() ![]() ![]() |
|
T. Shen
and J. Huang
, Well-posedness of the stochastic fractional Boussinesq equation with Lévy noise, Stoch. Anal. Appl, 33 (2015)
, 1092-1114.
doi: 10.1080/07362994.2015.1089410.![]() ![]() ![]() |
|
F.-Y. Wang
, L. Xu
and X. Zhang
, Gradient estimates for SDEs driven by multiplicative Lévy noise, J. Funct. Anal., 269 (2015)
, 3195-3219.
doi: 10.1016/j.jfa.2015.09.007.![]() ![]() ![]() |
|
B. Xie
, Uniqueness of invariant measures of infinite dimensional stochastic differential equations driven by Lévy noise, Potential Anal., 36 (2012)
, 35-66.
doi: 10.1007/s11118-011-9220-6.![]() ![]() ![]() |
|
M. Yang
, A parabolic Triebel-Lizorkin estimates for the fractional Laplacian operator, Proc. Amer. Math. Soc., 143 (2015)
, 2571-2578.
doi: 10.1090/S0002-9939-2015-12523-3.![]() ![]() ![]() |