October  2017, 37(10): 5191-5209. doi: 10.3934/dcds.2017225

The Riemann Problem at a Junction for a Phase Transition Traffic Model

Department of Mathematics and its Applications, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy

* Corresponding author: M. Garavello

Received  October 2016 Revised  May 2017 Published  June 2017

Fund Project: The authors were partially supported by the INdAM-GNAMPA 2015 project "Balance Laws in the Modeling of Physical, Biological and Industrial Processes".

We extend the Phase Transition model for traffic proposed in [8], by Colombo, Marcellini, and Rascle to the network case. More precisely, we consider the Riemann problem for such a system at a general junction with $n$ incoming and $m$ outgoing roads. We propose a Riemann solver at the junction which conserves both the number of cars and the maximal speed of each vehicle, which is a key feature of the Phase Transition model. For special junctions, we prove that the Riemann solver is well defined.

Citation: Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225
References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.  doi: 10.1137/S0036139997332099.  Google Scholar

[2]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.  doi: 10.1137/090754467.  Google Scholar

[3]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.  doi: 10.1137/S0036141004402683.  Google Scholar

[4]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.  doi: 10.1137/S0036139901393184.  Google Scholar

[5]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, In Progress in analysis, Vol. I, II (Berlin, 2001), pages 1279-1287. World Sci. Publ., River Edge, NJ, 2003.  Google Scholar

[6]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.  doi: 10.1142/S0219891610002025.  Google Scholar

[7]

R. M. Colombo and F. Marcellini, A mixed ODE-PDE model for vehicular traffic, Math. Methods Appl. Sci., 38 (2015), 1292-1302.  doi: 10.1002/mma.3146.  Google Scholar

[8]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.  doi: 10.1137/090752468.  Google Scholar

[9]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks Volume 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016.  Google Scholar

[10]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.  doi: 10.1080/03605300500358053.  Google Scholar

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks volume 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[12]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[13]

M. HertyS. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, 1 (2006), 275-294.  doi: 10.3934/nhm.2006.1.275.  Google Scholar

[14]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM Journal on Mathematical Analysis, 38 (2006), 595-616.  doi: 10.1137/05062617X.  Google Scholar

[15]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.  doi: 10.1137/S0036141093243289.  Google Scholar

[16]

J. P. LebacqueX. LouisS. MammarB. Schnetzlera and H. Haj-Salem, Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, 346 (2008), 1203-1206.  doi: 10.1016/j.crma.2008.09.024.  Google Scholar

[17]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[18]

F. Marcellini, Free-congested and micro-macro descriptions of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 543-556.  doi: 10.3934/dcdss.2014.7.543.  Google Scholar

[19]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68 (2007), 413-436.  doi: 10.1137/060678415.  Google Scholar

[20]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[21]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

show all references

References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.  doi: 10.1137/S0036139997332099.  Google Scholar

[2]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.  doi: 10.1137/090754467.  Google Scholar

[3]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.  doi: 10.1137/S0036141004402683.  Google Scholar

[4]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.  doi: 10.1137/S0036139901393184.  Google Scholar

[5]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, In Progress in analysis, Vol. I, II (Berlin, 2001), pages 1279-1287. World Sci. Publ., River Edge, NJ, 2003.  Google Scholar

[6]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.  doi: 10.1142/S0219891610002025.  Google Scholar

[7]

R. M. Colombo and F. Marcellini, A mixed ODE-PDE model for vehicular traffic, Math. Methods Appl. Sci., 38 (2015), 1292-1302.  doi: 10.1002/mma.3146.  Google Scholar

[8]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.  doi: 10.1137/090752468.  Google Scholar

[9]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks Volume 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016.  Google Scholar

[10]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.  doi: 10.1080/03605300500358053.  Google Scholar

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks volume 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[12]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[13]

M. HertyS. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, 1 (2006), 275-294.  doi: 10.3934/nhm.2006.1.275.  Google Scholar

[14]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM Journal on Mathematical Analysis, 38 (2006), 595-616.  doi: 10.1137/05062617X.  Google Scholar

[15]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.  doi: 10.1137/S0036141093243289.  Google Scholar

[16]

J. P. LebacqueX. LouisS. MammarB. Schnetzlera and H. Haj-Salem, Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, 346 (2008), 1203-1206.  doi: 10.1016/j.crma.2008.09.024.  Google Scholar

[17]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[18]

F. Marcellini, Free-congested and micro-macro descriptions of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 543-556.  doi: 10.3934/dcdss.2014.7.543.  Google Scholar

[19]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68 (2007), 413-436.  doi: 10.1137/060678415.  Google Scholar

[20]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[21]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

Figure 1.  The free phase $F$ and the congested phase $C$ resulting from (1) in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. In the $(\rho,\eta)$ plane, the curves $\eta= \check w \rho $, $\eta= \hat w \rho $ and the curve $\eta= \frac{V_{\max}}{\psi(\rho)}\rho $ that divides the two phases are represented. The densities $\sigma_-$ and $\sigma_+$ are given by the intersections between the previous curves. Similarly in the $(\rho, \rho v)$ plane, the curves $\rho v= \check w \psi(\rho)\rho $, $\rho v= \hat w \psi(\rho)\rho $ and the densities $\sigma_-$ and $\sigma_+$ are represented
Figure 2.  The case $(\bar \rho,\bar \eta)\in C$. The set $\mathcal T_{inc}\left(\bar \rho, \bar \eta\right)$ it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The set $\mathcal T_{inc}^f \left(\bar \rho, \bar \eta\right)$ is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 3.  The case $(\bar \rho,\bar \eta)\in F$. The set $\mathcal T_{inc}\left(\bar \rho, \bar \eta\right)$ it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The set $\mathcal T_{inc}^f \left(\bar \rho, \bar \eta\right)$ is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 4.  The case $(\bar \rho,\bar \eta)\in F$. The set $\mathcal T_{out}\left(w, \bar \rho, \bar \eta \right)$ it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The set $\mathcal T_{out}^f \left(w,\bar \rho, \bar \eta\right)$ is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 5.  The case $(\bar \rho,\bar \eta)\in C$. The set $\mathcal T_{out}\left(w, \bar \rho, \bar \eta \right)$ it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The set $\mathcal T_{out}^f \left(w,\bar \rho, \bar \eta\right)$ is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 6.  The case $(\bar \rho,\bar \eta)\in F$ in an outgoing road for the approach in Subsection 4.1. The set of all the possible traces it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The corresponding set of flows is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 7.  The case $(\bar \rho,\bar \eta)\in C$ in an outgoing road for the approach in Subsection 4.1. The set of all the possible traces it is represented in red in the coordinates, from left to right, $(\rho,\eta)$ and $(\rho, \rho v)$. The corresponding set of flows is represented on the $\rho v$ axis in the $(\rho, \rho v)$ plane
Figure 8.  The situation in the outgoing road related to the approach of Subsection 4.1. Left, in the $\left(\rho, \eta\right)$-plane, the states $\left(\rho_3^\ast, \eta_3^\ast\right)$ and $\left(\bar \rho_3, \bar \eta_3\right)$, connected through the middle state $\left(\rho^m, \eta^m\right)$. Right, in the $(t,x)$-plane, the waves generated by the Riemann problem. Note that the first wave has negative speed, so that it is not contained in the feasible region of the outgoing road
Figure 9.  The case $\gamma_{1}^{*}+\gamma_{2}^{*}=\Gamma_{3}^{w_{3}}$. At left the case $\gamma_1^* < \Gamma_1$ and $\gamma_2^* < \Gamma_2$. At right the case $\gamma_1^* = \Gamma_1$
Figure 10.  The case $\gamma_{1}^{*}+\gamma_{2}^{*}<\Gamma_{3}^{w_{3}}$
[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (61)
  • Cited by (3)

Other articles
by authors

[Back to Top]