Advanced Search
Article Contents
Article Contents

Initial Pointwise Bounds and Blow-up for Parabolic Choquard-Pekar Inequalities

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We study the behavior as $t \to 0^+$ of nonnegative functions

    $u\in {{C}^{2,1}}({{\mathbb{R}}^{n}}\times (0,1))\cap {{L}^{\lambda }}({{\mathbb{R}}^{n}}\times (0,1)),\ \ n\ge 1,\ \ \ \ \ \ \ \ \ \ \ \ \left( 0.1 \right)$

    satisfying the parabolic Choquard-Pekar type inequalities

    $0\le {{u}_{t}}-\Delta u\le ({{\Phi }^{\alpha /n}}*{{u}^{\lambda }}){{u}^{\sigma }}\ \ \text{ in }{{B}_{1}}\ (0)\times (0,1)\ \ \ \ \ \ \ \ \ \ \left( 0.2 \right)$

    where $α∈(0, n+2)$, $λ>0$, and $σ≥0$ are constants, $Φ$ is the heat kernel, and $*$ is the convolution operation in $\mathbb{R}^n× (0, 1)$. We provide optimal conditions on $α, λ$, and $σ$ such that nonnegative solutions $u$ of (0.1), (0.2) satisfy pointwise bounds in compact subsets of $B_1(0)$ as $t \to0^+$. We obtain similar results for nonnegative solutions of (0.1), (0.2) when $Φ^{α/n}$ in (0.2) is replaced with the fundamental solution $Φ_α$ of the fractional heat operator $(\frac{\partial}{\partial t}-Δ)^{α/2}$.

    Mathematics Subject Classification: 35B09, 35B33, 35B44, 35B45, 35K10, 35K58, 35R09, 35R45.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Case $\alpha\in (2,n+2)$

    Figure 2.  Case $\alpha\in (0,2]$. When $\alpha=2$ the graph on the interval $\lambda>(n+2)/n$ is the horizontal half line $\sigma=1$

  •   H. Chen and F. Zhou, Classification of isolated singularities of positive solutions for Choquard equations, J. Differential Equations, 261 (2016), 6668-6698, arXiv: 1512.03181. doi: 10.1016/j.jde.2016.08.047.
      J. T. Devreese and A. S. Alexandrov, Advances in Polaron Physics Springer Series in Solid-State Sciences, vol. 159, Springer, 2010.
      M. Ghergu and  S. D. TaliaferroIsolated Singularities in Partial Differential Inequalities, Cambridge University Press, 2016.  doi: 10.1017/CBO9781316481363.
      M. Ghergu  and  S. D. Taliaferro , Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016) , 189-217.  doi: 10.1016/j.jde.2016.03.004.
      K. R. W. Jones , Newtonian quantum gravity, Australian Journal of Physics, 48 (1995) , 1055-1082.  doi: 10.1071/PH951055.
      E. H. Lieb , Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77) , 93-105. 
      P.-L. Lions , The Choquard equation and related questions, Nonlinear Anal., 4 (1980) , 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.
      P.-L. Lions , The concentration-compactness principle in the calculus of variations. The locally compact case.Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984) , 109-145.  doi: 10.1016/S0294-1449(16)30428-0.
      C. Ma , W. Chen  and  C. Li , Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011) , 2676-2699.  doi: 10.1016/j.aim.2010.07.020.
      L. Ma  and  L. Zhao , Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010) , 455-467.  doi: 10.1007/s00205-008-0208-3.
      M. Melgaard and F. Zongo, Multiple solutions of the quasirelativistic Choquard equation, J. Math. Phys., 53 (2012), 033709, 12pp. doi: 10.1063/1.3695991.
      I. M. Moroz , R. Penrose  and  P. Tod , Spherically-symmetric solutions of the SchrödingerNewton equations, Classical Quantum Gravity, 15 (1998) , 2733-2742.  doi: 10.1088/0264-9381/15/9/019.
      V. Moroz  and  J. Van Schaftingen , Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013) , 153-184.  doi: 10.1016/j.jfa.2013.04.007.
      V. Moroz  and  J. Van Schaftingen , Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations, 254 (2013) , 3089-3145.  doi: 10.1016/j.jde.2012.12.019.
      V. Moroz  and  J. Van Schaftingen , Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015) , 199-235.  doi: 10.1007/s00526-014-0709-x.
      S. PekarUntersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. 
      P. Quittner and  P. SoupletSuperlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhauser, Basel, 2007. 
      S. G. SamkoHypersingular Integrals and Their Applications, Taylor and Francis, London, 2002. 
      S. D. Taliaferro , Initial blow-up of solutions of semilinear parabolic inequalities, J. Differential Equations, 250 (2011) , 892-928.  doi: 10.1016/j.jde.2010.07.033.
      J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22pp. doi: 10.1063/1.3060169.
      R. Zhuo , W. Chen , X. Cui  and  Z. Yuan , Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016) , 1125-1141.  doi: 10.3934/dcds.2016.36.1125.
  • 加载中



Article Metrics

HTML views(438) PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint