We study the behavior as
$u\in {{C}^{2,1}}({{\mathbb{R}}^{n}}\times (0,1))\cap {{L}^{\lambda }}({{\mathbb{R}}^{n}}\times (0,1)),\ \ n\ge 1,\ \ \ \ \ \ \ \ \ \ \ \ \left( 0.1 \right)$
satisfying the parabolic Choquard-Pekar type inequalities
$0\le {{u}_{t}}-\Delta u\le ({{\Phi }^{\alpha /n}}*{{u}^{\lambda }}){{u}^{\sigma }}\ \ \text{ in }{{B}_{1}}\ (0)\times (0,1)\ \ \ \ \ \ \ \ \ \ \left( 0.2 \right)$
where
Citation: |
H. Chen and F. Zhou, Classification of isolated singularities of positive solutions for Choquard
equations, J. Differential Equations, 261 (2016), 6668-6698, arXiv: 1512.03181.
doi: 10.1016/j.jde.2016.08.047.![]() ![]() ![]() |
|
J. T. Devreese and A. S. Alexandrov,
Advances in Polaron Physics Springer Series in Solid-State Sciences, vol. 159, Springer, 2010.
![]() |
|
M. Ghergu and S. D. Taliaferro, Isolated Singularities in Partial Differential Inequalities, Cambridge University Press, 2016.
doi: 10.1017/CBO9781316481363.![]() ![]() ![]() |
|
M. Ghergu
and S. D. Taliaferro
, Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016)
, 189-217.
doi: 10.1016/j.jde.2016.03.004.![]() ![]() ![]() |
|
K. R. W. Jones
, Newtonian quantum gravity, Australian Journal of Physics, 48 (1995)
, 1055-1082.
doi: 10.1071/PH951055.![]() ![]() |
|
E. H. Lieb
, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77)
, 93-105.
![]() ![]() |
|
P.-L. Lions
, The Choquard equation and related questions, Nonlinear Anal., 4 (1980)
, 1063-1072.
doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
|
P.-L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case.Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984)
, 109-145.
doi: 10.1016/S0294-1449(16)30428-0.![]() ![]() ![]() |
|
C. Ma
, W. Chen
and C. Li
, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011)
, 2676-2699.
doi: 10.1016/j.aim.2010.07.020.![]() ![]() ![]() |
|
L. Ma
and L. Zhao
, Classification of positive solitary solutions of the nonlinear Choquard
equation, Arch. Ration. Mech. Anal., 195 (2010)
, 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
|
M. Melgaard and F. Zongo, Multiple solutions of the quasirelativistic Choquard equation,
J. Math. Phys., 53 (2012), 033709, 12pp.
doi: 10.1063/1.3695991.![]() ![]() ![]() |
|
I. M. Moroz
, R. Penrose
and P. Tod
, Spherically-symmetric solutions of the SchrödingerNewton equations, Classical Quantum Gravity, 15 (1998)
, 2733-2742.
doi: 10.1088/0264-9381/15/9/019.![]() ![]() ![]() |
|
V. Moroz
and J. Van Schaftingen
, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013)
, 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
|
V. Moroz
and J. Van Schaftingen
, Nonexistence and optimal decay of supersolutions to
Choquard equations in exterior domains, J. Differential Equations, 254 (2013)
, 3089-3145.
doi: 10.1016/j.jde.2012.12.019.![]() ![]() ![]() |
|
V. Moroz
and J. Van Schaftingen
, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015)
, 199-235.
doi: 10.1007/s00526-014-0709-x.![]() ![]() ![]() |
|
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
|
P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhauser, Basel, 2007.
![]() ![]() |
|
S. G. Samko, Hypersingular Integrals and Their Applications, Taylor and Francis, London, 2002.
![]() ![]() |
|
S. D. Taliaferro
, Initial blow-up of solutions of semilinear parabolic inequalities, J. Differential Equations, 250 (2011)
, 892-928.
doi: 10.1016/j.jde.2010.07.033.![]() ![]() ![]() |
|
J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations,
J. Math. Phys., 50 (2009), 012905, 22pp.
doi: 10.1063/1.3060169.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and non-existence of solutions for a
nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |
Case
Case