October  2017, 37(10): 5271-5284. doi: 10.3934/dcds.2017228

A locally integrable multi-dimensional billiard system

Steklov Mathematical Institute, 8 Gubkina St. Moscow, 119991, Russia

 

Received  January 2017 Revised  May 2017 Published  June 2017

Fund Project: The research is supported by the RNF grant 14-50-00005.

We consider a multi-dimensional billiard system in an $(n+1)$-dimensional Euclidean space, the direct product of the "horizontal" hyperplane and the "vertical" line. The hypersurface that determines the system is assumed to be smooth and symmetric in all coordinate hyperplanes. Hence there exists a periodic orbit $γ$ of period 2 moving along the "vertical" coordinate axis. The question we ask is as follows. Is it possible to choose such a system to have the dynamics locally (near $γ$) conjugated to the dynamics of a linear map?

Since the problem is local, the billiard hypersurface can be determined as the graphs of the functions $± f$, where $f$ is even and defined in a neighborhood of the origin on the "horizontal" coordinate hyperplane. We prove that $f$ exists as a formal Taylor series in the non-resonant case and give numerical evidence for convergence of the series.

Citation: Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228
References:
[1]

A. AvilaJ. De Simoi and V. Kaloshin, An integrable deformation of an ellipse of small eccentricity is an ellipse, Annals of Mathematics, 184 (2016), 527-558.  doi: 10.4007/annals.2016.184.2.5.  Google Scholar

[2]

M. Bialy and A. E. Mironov, Angular Billiard and Algebraic Birkhoff conjecture, Adv. Math., 313 (2017), 102-126, arXiv: 1601.03196 doi: 10.1016/j.aim.2017.04.001.  Google Scholar

[3]

G. D. Birkhoff, Dynamical Systems American Mathematical Society Colloquium Publications, Vol. Ⅸ American Mathematical Society, Providence, R. I. 1966  Google Scholar

[4]

S. V. Bolotin, Integrable Birkhoff billiards, Vestnik Moskov. Univ. Ser. I Mat. Mekh. , 2 (1990), 33-36, (in Russian); translated in Mosc. Univ. Mech. Bull., 2 (1990), 10-13.  Google Scholar

[5]

S. V. Bolotin and D. V. Treschev, The anti-integrable limit, Russian Math. Surveys, 70 (2015), 975-1030.  doi: 10.4213/rm9692.  Google Scholar

[6]

B. BeauzamyE. BombieriP. Enflo and H. L. Montgomery, Products of polynomials in many variables, Journal of Number Theory, 36 (1990), 219-245.  doi: 10.1016/0022-314X(90)90075-3.  Google Scholar

[7]

A. DelshamsYu. Fedorov and R. Ramirez-Ros, Homoclinic billiard orbits inside symmetrically perturbed ellipsoids, Nonlinearity, 14 (2001), 1141-1195.  doi: 10.1088/0951-7715/14/5/313.  Google Scholar

[8]

A. Glutsyuk and E. Shustin On polynomially integrable planar outer billiards and curves with symmetry property, preprint arXiv: 1607.07593. Google Scholar

[9]

V. V. Kozlov, Two-link billiard trajectories: Extremal properties and stability, J. Appl. Math. Mech., 64 (2000), 903-907.  doi: 10.1016/S0021-8928(00)00121-0.  Google Scholar

[10]

V. V. Kozlov, Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard, Proc. Steklov Inst. Math., 273 (2011), 196-213.  doi: 10.1134/S0081543811040092.  Google Scholar

[11]

V. V. Kozlov, Polynomial conservation laws for the Lorentz gas and the Boltzmann-Gibbs gas, Russian Math. Surveys, 71 (2016), 253-290.  doi: 10.4213/rm9707.  Google Scholar

[12]

V. V. Kozlov and D. V. Treshchev, Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts Translations of Mathematical Monographs, 89 Amer. Math. Soc., Providence, RI, 1991.  Google Scholar

[13]

S. Tabachnikov, Geometry and Billiards Student Mathematical Library, 30 Providence, RI -Amer. Math. Soc, 2005. doi: 10.1090/stml/030.  Google Scholar

[14]

D. Treschev, Billiard map and rigid rotation, Phys. D, 255 (2013), 31-34.  doi: 10.1016/j.physd.2013.04.003.  Google Scholar

[15]

D. V. Treschev, On a conjugacy problem in billiard dynamics, Proc. Steklov Inst. Math., 289 (2015), 291-299.  doi: 10.1134/S0081543815040173.  Google Scholar

[16]

H. Whitney, Analytic extensions of functions defined in closed sets, Transactions of the American Mathematical Society, American Mathematical Society, 36 (1934), 63-89. doi: 10. 1090/S0002-9947-1934-1501735-3.  Google Scholar

show all references

References:
[1]

A. AvilaJ. De Simoi and V. Kaloshin, An integrable deformation of an ellipse of small eccentricity is an ellipse, Annals of Mathematics, 184 (2016), 527-558.  doi: 10.4007/annals.2016.184.2.5.  Google Scholar

[2]

M. Bialy and A. E. Mironov, Angular Billiard and Algebraic Birkhoff conjecture, Adv. Math., 313 (2017), 102-126, arXiv: 1601.03196 doi: 10.1016/j.aim.2017.04.001.  Google Scholar

[3]

G. D. Birkhoff, Dynamical Systems American Mathematical Society Colloquium Publications, Vol. Ⅸ American Mathematical Society, Providence, R. I. 1966  Google Scholar

[4]

S. V. Bolotin, Integrable Birkhoff billiards, Vestnik Moskov. Univ. Ser. I Mat. Mekh. , 2 (1990), 33-36, (in Russian); translated in Mosc. Univ. Mech. Bull., 2 (1990), 10-13.  Google Scholar

[5]

S. V. Bolotin and D. V. Treschev, The anti-integrable limit, Russian Math. Surveys, 70 (2015), 975-1030.  doi: 10.4213/rm9692.  Google Scholar

[6]

B. BeauzamyE. BombieriP. Enflo and H. L. Montgomery, Products of polynomials in many variables, Journal of Number Theory, 36 (1990), 219-245.  doi: 10.1016/0022-314X(90)90075-3.  Google Scholar

[7]

A. DelshamsYu. Fedorov and R. Ramirez-Ros, Homoclinic billiard orbits inside symmetrically perturbed ellipsoids, Nonlinearity, 14 (2001), 1141-1195.  doi: 10.1088/0951-7715/14/5/313.  Google Scholar

[8]

A. Glutsyuk and E. Shustin On polynomially integrable planar outer billiards and curves with symmetry property, preprint arXiv: 1607.07593. Google Scholar

[9]

V. V. Kozlov, Two-link billiard trajectories: Extremal properties and stability, J. Appl. Math. Mech., 64 (2000), 903-907.  doi: 10.1016/S0021-8928(00)00121-0.  Google Scholar

[10]

V. V. Kozlov, Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard, Proc. Steklov Inst. Math., 273 (2011), 196-213.  doi: 10.1134/S0081543811040092.  Google Scholar

[11]

V. V. Kozlov, Polynomial conservation laws for the Lorentz gas and the Boltzmann-Gibbs gas, Russian Math. Surveys, 71 (2016), 253-290.  doi: 10.4213/rm9707.  Google Scholar

[12]

V. V. Kozlov and D. V. Treshchev, Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts Translations of Mathematical Monographs, 89 Amer. Math. Soc., Providence, RI, 1991.  Google Scholar

[13]

S. Tabachnikov, Geometry and Billiards Student Mathematical Library, 30 Providence, RI -Amer. Math. Soc, 2005. doi: 10.1090/stml/030.  Google Scholar

[14]

D. Treschev, Billiard map and rigid rotation, Phys. D, 255 (2013), 31-34.  doi: 10.1016/j.physd.2013.04.003.  Google Scholar

[15]

D. V. Treschev, On a conjugacy problem in billiard dynamics, Proc. Steklov Inst. Math., 289 (2015), 291-299.  doi: 10.1134/S0081543815040173.  Google Scholar

[16]

H. Whitney, Analytic extensions of functions defined in closed sets, Transactions of the American Mathematical Society, American Mathematical Society, 36 (1934), 63-89. doi: 10. 1090/S0002-9947-1934-1501735-3.  Google Scholar

Figure 1.  The graph of $b^{-1/2}_\infty$ as a function of $\alpha/(2\pi)$. Two "gaps" correspond to the resonances $\frac\alpha{2\pi} = 3/10$ and $\frac\alpha{2\pi} = 1/3$
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[17]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (61)
  • Cited by (4)

Other articles
by authors

[Back to Top]