We consider a multi-dimensional billiard system in an $(n+1)$-dimensional Euclidean space, the direct product of the "horizontal" hyperplane and the "vertical" line. The hypersurface that determines the system is assumed to be smooth and symmetric in all coordinate hyperplanes. Hence there exists a periodic orbit $γ$ of period 2 moving along the "vertical" coordinate axis. The question we ask is as follows. Is it possible to choose such a system to have the dynamics locally (near $γ$) conjugated to the dynamics of a linear map?
Since the problem is local, the billiard hypersurface can be determined as the graphs of the functions $± f$, where $f$ is even and defined in a neighborhood of the origin on the "horizontal" coordinate hyperplane. We prove that $f$ exists as a formal Taylor series in the non-resonant case and give numerical evidence for convergence of the series.
Citation: |
A. Avila
, J. De Simoi
and V. Kaloshin
, An integrable deformation of an ellipse of small
eccentricity is an ellipse, Annals of Mathematics, 184 (2016)
, 527-558.
doi: 10.4007/annals.2016.184.2.5.![]() ![]() ![]() |
|
M. Bialy and A. E. Mironov, Angular Billiard and Algebraic Birkhoff conjecture, Adv. Math.,
313 (2017), 102-126, arXiv: 1601.03196
doi: 10.1016/j.aim.2017.04.001.![]() ![]() ![]() |
|
G. D. Birkhoff,
Dynamical Systems American Mathematical Society Colloquium Publications, Vol. Ⅸ American Mathematical Society, Providence, R. I. 1966
![]() ![]() |
|
S. V. Bolotin, Integrable Birkhoff billiards, Vestnik Moskov. Univ. Ser. I Mat. Mekh. , 2
(1990), 33-36, (in Russian); translated in Mosc. Univ. Mech. Bull., 2 (1990), 10-13.
![]() ![]() |
|
S. V. Bolotin
and D. V. Treschev
, The anti-integrable limit, Russian Math. Surveys, 70 (2015)
, 975-1030.
doi: 10.4213/rm9692.![]() ![]() ![]() |
|
B. Beauzamy
, E. Bombieri
, P. Enflo
and H. L. Montgomery
, Products of polynomials in many
variables, Journal of Number Theory, 36 (1990)
, 219-245.
doi: 10.1016/0022-314X(90)90075-3.![]() ![]() ![]() |
|
A. Delshams
, Yu. Fedorov
and R. Ramirez-Ros
, Homoclinic billiard orbits inside symmetrically perturbed ellipsoids, Nonlinearity, 14 (2001)
, 1141-1195.
doi: 10.1088/0951-7715/14/5/313.![]() ![]() ![]() |
|
A. Glutsyuk and E. Shustin On polynomially integrable planar outer billiards and curves with symmetry property, preprint arXiv: 1607.07593.
![]() |
|
V. V. Kozlov
, Two-link billiard trajectories: Extremal properties and stability, J. Appl. Math. Mech., 64 (2000)
, 903-907.
doi: 10.1016/S0021-8928(00)00121-0.![]() ![]() ![]() |
|
V. V. Kozlov
, Problem of stability of two-link trajectories in a multidimensional Birkhoff
billiard, Proc. Steklov Inst. Math., 273 (2011)
, 196-213.
doi: 10.1134/S0081543811040092.![]() ![]() ![]() |
|
V. V. Kozlov
, Polynomial conservation laws for the Lorentz gas and the Boltzmann-Gibbs
gas, Russian Math. Surveys, 71 (2016)
, 253-290.
doi: 10.4213/rm9707.![]() ![]() ![]() |
|
V. V. Kozlov and D. V. Treshchev,
Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts Translations of Mathematical Monographs, 89 Amer. Math. Soc., Providence, RI, 1991.
![]() ![]() |
|
S. Tabachnikov,
Geometry and Billiards Student Mathematical Library, 30 Providence, RI -Amer. Math. Soc, 2005.
doi: 10.1090/stml/030.![]() ![]() ![]() |
|
D. Treschev
, Billiard map and rigid rotation, Phys. D, 255 (2013)
, 31-34.
doi: 10.1016/j.physd.2013.04.003.![]() ![]() ![]() |
|
D. V. Treschev
, On a conjugacy problem in billiard dynamics, Proc. Steklov Inst. Math., 289 (2015)
, 291-299.
doi: 10.1134/S0081543815040173.![]() ![]() ![]() |
|
H. Whitney, Analytic extensions of functions defined in closed sets, Transactions of the American Mathematical Society, American Mathematical Society, 36 (1934), 63-89.
doi: 10. 1090/S0002-9947-1934-1501735-3.![]() ![]() ![]() |
The graph of