In this short note we establish a law of large permanent for matrices with entries from an $\mathbf{N}^2$-indexed stochastic process. This answers a question by Bochi, Iommi and Ponce in [
Citation: |
S. Aaronson
and H. Nguyen
, Near invariance of the hypercube, Israel Journal of Mathematics, 212 (2016)
, 385-417.
doi: 10.1007/s11856-016-1291-z.![]() ![]() ![]() |
|
N. Alon and S. Friedland, The maximum number of perfect matchings in graphs with a given degree sequence,
Electron. J. Combin., 15 (2008), Note 13, 2 pp.
![]() ![]() |
|
A. Barvinok
, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, Random Structures and Algorithms, 14 (1999)
, 29-61.
doi: 10.1002/(SICI)1098-2418(1999010)14:1<29::AID-RSA2>3.0.CO;2-X.![]() ![]() ![]() |
|
J. Bochi
, G. Iommi
and M. Ponce
, The scaling mean and a law of large permanents, Adv. Math., 292 (2016)
, 374-409.
doi: 10.1016/j.aim.2016.01.013.![]() ![]() ![]() |
|
J. Bochi, G. Iommi and M. Ponce, Perfect matching in inhomogeneous random bipartite graphs in random environment, submitted, https://arxiv.org/pdf/1605.06137v2.pdf.
![]() |
|
L. M. Bregman
, Some properties of non-negative matrices and their permanents, Soviet Math. Dokl., 14 (1973)
, 945-949.
![]() |
|
R. Brualdi
, S. Parter
and H. Schneider
, The diagonal equivalence of a non-negative matrix to a stochastic matrix, J. Math. Anal. Appl., 16 (1966)
, 31-50.
doi: 10.1016/0022-247X(66)90184-3.![]() ![]() ![]() |
|
K. P. Costello
and V. Vu
, Concentration of random determinants and permanent estimators, SIAM J. Discrete Math., 23 (2009)
, 1356-1371.
doi: 10.1137/080733784.![]() ![]() ![]() |
|
G. Egorychev
, The solution of van der Waerden's problem for permanents, Adv. in Math., 42 (1981)
, 299-305.
doi: 10.1016/0001-8708(81)90044-X.![]() ![]() ![]() |
|
D. Falikman
, Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki, 29 (1981)
, 931-938, 957.
![]() ![]() |
|
S. Friedland
, Positive diagonal scaling of a nonnegative tensor to one with prescribed slice sums, Linear Algebra Appl., 434 (2011)
, 1615-1619.
doi: 10.1016/j.laa.2010.02.007.![]() ![]() ![]() |
|
S. Friedland
and S. Karlin
, Some inequalities for the spectral radius of non-negative matrices and applications, Duke Math. J., 42 (1975)
, 459-490.
![]() ![]() |
|
S. Friedland
, B. Rider
and O. Zeitouni
, Concentration of permanent estimators for certain large matrices, Annals Appl. Prob, 14 (2004)
, 1559-1576.
doi: 10.1214/105051604000000396.![]() ![]() ![]() |
|
S. Friedland
, S. Low
and C. Tan
, Nonnegative matrix inequalities and their application to non-convex power control optimization, SIAM J. Matrix Anal. Appl., 32 (2011)
, 1030-1055.
doi: 10.1137/090757137.![]() ![]() ![]() |
|
C. D. Godsil and I. Gutman, On the matching polynomial of a graph, in Algebraic Methods in
Graph Theory I-II (L. Lovász and V. T. Sós, eds. ), North-Holland, Amsterdam, 25 (1981),
241-249.
![]() ![]() |
|
N. R. Goodman
, Distribution of the determinant of a complex Wishart distributed matrix, Annals Stat., 34 (1963)
, 178-180.
doi: 10.1214/aoms/1177704251.![]() ![]() ![]() |
|
A. Guionnet
and O. Zeitouni
, Concentration of the spectral measure for large matrices, Elec. Comm. Probab., 5 (2000)
, 119-136.
doi: 10.1214/ECP.v5-1026.![]() ![]() ![]() |
|
G. Halász
and G. Székely
, On the elementary symmetric polynomials of independent random variables, Acta Math. Acad. Sci. Hungar., 28 (1976)
, 397-400.
doi: 10.1007/BF01896806.![]() ![]() ![]() |
|
G. Keller,
Equilibrium States in Ergodic Theory London Math. Soc. Stud. Texts, vol. 42, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781107359987.![]() ![]() ![]() |
|
N. Linial
, A. Samorodnitsky
and A. Wigderson
, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents, Combinatorica, 20 (2000)
, 545-568.
doi: 10.1007/s004930070007.![]() ![]() ![]() |
|
A. Marshall
and I. Olkin
, Scaling of matrices to achieve specified row and column sums, Numer. Math., 12 (1968)
, 83-90.
doi: 10.1007/BF02170999.![]() ![]() ![]() |
|
M. Menon
, Matrix links, an extremization problem, and the reduction of a non-negative matrix to one with prescribed row and column sums, Canad. J. Math., 20 (1968)
, 225-232.
doi: 10.4153/CJM-1968-021-9.![]() ![]() ![]() |
|
H. Minc
, Upper bounds for permanents of $(0, 1)$-matrices, Bull. Amer. Math. Soc., 69 (1963)
, 789-791.
doi: 10.1090/S0002-9904-1963-11031-9.![]() ![]() ![]() |
|
G. Rempala and J. Wesołowski, Symmetric Functionals on Random Matrices and Random Matchings Problems, Springer, New York, NY, 2008.
![]() ![]() |
|
M. Rudelson
and O. Zeitouni
, Singular values of Gaussian matrices and permanent estimators, Random Structures and Algorithms, 48 (2016)
, 183-212.
doi: 10.1002/rsa.20564.![]() ![]() ![]() |
|
R. Sinkhorn
, Continuous dependence on $A$ in the $D_1AD_2$ theorems, Proc. Amer. Math. Soc., 32 (1972)
, 395-398.
doi: 10.2307/2037825.![]() ![]() ![]() |
|
R. Sinkhorn
and P. Knopp
, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math., 21 (1967)
, 343-348.
doi: 10.2140/pjm.1967.21.343.![]() ![]() ![]() |
|
G. Soules
, New permanental upper bounds for nonnegative matrices, Linear Multilinear Algebra, 51 (2003)
, 319-337.
doi: 10.1080/0308108031000098450.![]() ![]() ![]() |
|
B. van der Waerden
, Aufgabe 45, Jber. Deutsch. Math. Verein., 35 (1926)
, p117.
![]() |
|
A. Widgerson, Matrix and Operator scaling and their many applications,
http://www.math.ias.edu/avi/talks.
![]() |