October  2017, 37(10): 5299-5317. doi: 10.3934/dcds.2017230

Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers

School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475004, China

* Corresponding author: Zhongyuan Liu

Received  February 2017 Revised  May 2017 Published  June 2017

Fund Project: The author is supported by NSFC under grant No.11501166.

In this paper, we consider the following semilinear elliptic problem
$\begin{equation*}\begin{cases}-Δ u=|u|^{p-1}u-|u|^{q-1}u~\text{in}~\mathbb{R}^N, \\ u(x)\to 0, ~~\text{as}~|x|\to ∞, \end{cases}\end{equation*}$
where $\frac{N}{N-2} < q < p < p^*$ or $q>p>p^*$, $p^*=\frac{N+2}{N-2}$, $N≥3$. We show that if $q$ is fixed and $p$ is close enough to $\frac{N+2}{N-2}$, the above problem has radial nodal bubble tower solutions, which behave like a superposition of bubbles with different orders and blow up at the origin.
Citation: Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230
References:
[1]

W. AoM. MussoF. Pacard and J. Wei, Solutions without any symmetry for semilinear elliptic problems, J. Funct. Anal., 270 (2016), 884-956.  doi: 10.1016/j.jfa.2015.10.015.  Google Scholar

[2]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on ${{\mathbb{R}}^{N}}$, Arch. Rational Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.  Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal., 117 (1993), 447-460.  doi: 10.1006/jfan.1993.1133.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅱ, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[6]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[8]

J. Campos, "Bubble-Tower" phenomena in a semilinear elliptic equation with mixed Sobolev growth, Nonlinear Analysis, 68 (2008), 1382-1397.  doi: 10.1016/j.na.2006.12.032.  Google Scholar

[9]

D. Cao and X. Zhu, On the existence and nodal character of solutions of semilinear elliptic equations, Acta Math. Sci., 8 (1988), 345-359.   Google Scholar

[10]

A. Contreras and M. Del Pino, Nodal bubble-tower solutions to radial elliptic problems near criticality, Discrete Contin. Dyn. Syst., 16 (2006), 525-539.  doi: 10.3934/dcds.2006.16.525.  Google Scholar

[11]

E. N. Dancer, New solutions of equations on $\mathbb{R}^n$, Ann. Sc. Norm. Super. Pisa Cl. Sci.(4), 30 (2001), 535-563.   Google Scholar

[12]

E. N. Dancer and S. Santra, Singular perturbed problems in the zero mass case: Asymptotic behavior of spikes, Ann. Mat. Pura Appl., 189 (2010), 185-225.  doi: 10.1007/s10231-009-0105-x.  Google Scholar

[13]

E. N. DancerS. Santra and J. Wei, Asymptotic behavior of the least energy solution of a problem with competing powers, J. Funct. Anal., 261 (2011), 2094-2134.  doi: 10.1016/j.jfa.2011.06.005.  Google Scholar

[14]

J. Davila and I. Guerra, Slowly decaying radial solutions of an elliptic equations with subcritical and supercritical exponents, J.D'Analyse Math., 129 (2016), 367-391.  doi: 10.1007/s11854-016-0025-9.  Google Scholar

[15]

M. Del PinoJ. Dolbeault and M. Musso, "Bubble-Tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differential Equations, 193 (2003), 280-306.  doi: 10.1016/S0022-0396(03)00151-7.  Google Scholar

[16]

C. Jones, Radial solutions of a semilinear elliptic equation at a critical exponent, Arch. Rational Mech. Anal., 104 (1988), 251-270.  doi: 10.1007/BF00281356.  Google Scholar

[17]

C. Jones and T. Kupper, On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal., 17 (1986), 803-835.  doi: 10.1137/0517059.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u+{{u}^{p}}-u=0\ \ \text{in}\ {{\mathbb{R}}^{N}}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[19]

M. K. KwongJ. B. McLeodL. A. Peletier and W. C. Troy, On groundstate solutions of $-\Delta u={{u}^{p}}-{{u}^{q}}$, J. Differential Equations, 95 (1992), 218-239.  doi: 10.1016/0022-0396(92)90030-Q.  Google Scholar

[20]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $Δ u +f(u)=0$ in an annulus, Differential Integral Equations, 4 (1991), 588-599.   Google Scholar

[21]

Y. Li and W. M. Ni, Radial symmetry of positive solutions of a nonlinear elliptic equations in ${{\mathbb{R}}^{N}}$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.  Google Scholar

[22]

S. A. Lorca and P. Ubilla, Symmetric and nonsymmetric solutions for an elliptic equation on ${{\mathbb{R}}^{N}}$, Nonlinear Anal., 58 (2004), 961-968.  doi: 10.1016/j.na.2004.03.034.  Google Scholar

[23]

A. Malchiodi, Some new entire solutions of semilinear elliptic equations on ${{\mathbb{R}}^{n}}$, Adv. Math., 221 (2009), 1843-1909.  doi: 10.1016/j.aim.2009.03.012.  Google Scholar

[24]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u+f\left( u \right)=0$ with prescribed numbers of zeros, J. Differential Equations, 83 (1990), 368-378.  doi: 10.1016/0022-0396(90)90063-U.  Google Scholar

[25]

F. Merle and L. A. Peletier, Asymptotic behavior of positive solutions of elliptic equations with critical and supercritical growth. Ⅰ. The radial case, Arch. Ration. Mech. Anal., 112 (1990), 1-19.  doi: 10.1007/BF00431720.  Google Scholar

[26]

F. Merle and L. A. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. Ⅱ. The nonradial case, J. Funct. Anal., 105 (1992), 1-41.  doi: 10.1016/0022-1236(92)90070-Y.  Google Scholar

[27]

M. MussoF. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schr¨odinger equation, J. Eur. Math. Soc., 14 (2012), 1923-1953.  doi: 10.4171/JEMS/351.  Google Scholar

[28]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[29]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[30]

O. Rey, The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct.Anal., 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

G. Talenti, Best constant in Sobolev inequality, Ann. Math. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[32]

W. C. Troy, Bounded solutions of $\Delta u+|u{{|}^{p-1}}u-|u{{|}^{q-1}}u=0$ in the supercritical case, SIAM J. Math. Anal., 21 (1990), 1326-1334.  doi: 10.1137/0521073.  Google Scholar

show all references

References:
[1]

W. AoM. MussoF. Pacard and J. Wei, Solutions without any symmetry for semilinear elliptic problems, J. Funct. Anal., 270 (2016), 884-956.  doi: 10.1016/j.jfa.2015.10.015.  Google Scholar

[2]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on ${{\mathbb{R}}^{N}}$, Arch. Rational Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.  Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal., 117 (1993), 447-460.  doi: 10.1006/jfan.1993.1133.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅱ, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[6]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[8]

J. Campos, "Bubble-Tower" phenomena in a semilinear elliptic equation with mixed Sobolev growth, Nonlinear Analysis, 68 (2008), 1382-1397.  doi: 10.1016/j.na.2006.12.032.  Google Scholar

[9]

D. Cao and X. Zhu, On the existence and nodal character of solutions of semilinear elliptic equations, Acta Math. Sci., 8 (1988), 345-359.   Google Scholar

[10]

A. Contreras and M. Del Pino, Nodal bubble-tower solutions to radial elliptic problems near criticality, Discrete Contin. Dyn. Syst., 16 (2006), 525-539.  doi: 10.3934/dcds.2006.16.525.  Google Scholar

[11]

E. N. Dancer, New solutions of equations on $\mathbb{R}^n$, Ann. Sc. Norm. Super. Pisa Cl. Sci.(4), 30 (2001), 535-563.   Google Scholar

[12]

E. N. Dancer and S. Santra, Singular perturbed problems in the zero mass case: Asymptotic behavior of spikes, Ann. Mat. Pura Appl., 189 (2010), 185-225.  doi: 10.1007/s10231-009-0105-x.  Google Scholar

[13]

E. N. DancerS. Santra and J. Wei, Asymptotic behavior of the least energy solution of a problem with competing powers, J. Funct. Anal., 261 (2011), 2094-2134.  doi: 10.1016/j.jfa.2011.06.005.  Google Scholar

[14]

J. Davila and I. Guerra, Slowly decaying radial solutions of an elliptic equations with subcritical and supercritical exponents, J.D'Analyse Math., 129 (2016), 367-391.  doi: 10.1007/s11854-016-0025-9.  Google Scholar

[15]

M. Del PinoJ. Dolbeault and M. Musso, "Bubble-Tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differential Equations, 193 (2003), 280-306.  doi: 10.1016/S0022-0396(03)00151-7.  Google Scholar

[16]

C. Jones, Radial solutions of a semilinear elliptic equation at a critical exponent, Arch. Rational Mech. Anal., 104 (1988), 251-270.  doi: 10.1007/BF00281356.  Google Scholar

[17]

C. Jones and T. Kupper, On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal., 17 (1986), 803-835.  doi: 10.1137/0517059.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u+{{u}^{p}}-u=0\ \ \text{in}\ {{\mathbb{R}}^{N}}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[19]

M. K. KwongJ. B. McLeodL. A. Peletier and W. C. Troy, On groundstate solutions of $-\Delta u={{u}^{p}}-{{u}^{q}}$, J. Differential Equations, 95 (1992), 218-239.  doi: 10.1016/0022-0396(92)90030-Q.  Google Scholar

[20]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $Δ u +f(u)=0$ in an annulus, Differential Integral Equations, 4 (1991), 588-599.   Google Scholar

[21]

Y. Li and W. M. Ni, Radial symmetry of positive solutions of a nonlinear elliptic equations in ${{\mathbb{R}}^{N}}$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.  Google Scholar

[22]

S. A. Lorca and P. Ubilla, Symmetric and nonsymmetric solutions for an elliptic equation on ${{\mathbb{R}}^{N}}$, Nonlinear Anal., 58 (2004), 961-968.  doi: 10.1016/j.na.2004.03.034.  Google Scholar

[23]

A. Malchiodi, Some new entire solutions of semilinear elliptic equations on ${{\mathbb{R}}^{n}}$, Adv. Math., 221 (2009), 1843-1909.  doi: 10.1016/j.aim.2009.03.012.  Google Scholar

[24]

K. McLeodW. C. Troy and F. B. Weissler, Radial solutions of $\Delta u+f\left( u \right)=0$ with prescribed numbers of zeros, J. Differential Equations, 83 (1990), 368-378.  doi: 10.1016/0022-0396(90)90063-U.  Google Scholar

[25]

F. Merle and L. A. Peletier, Asymptotic behavior of positive solutions of elliptic equations with critical and supercritical growth. Ⅰ. The radial case, Arch. Ration. Mech. Anal., 112 (1990), 1-19.  doi: 10.1007/BF00431720.  Google Scholar

[26]

F. Merle and L. A. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. Ⅱ. The nonradial case, J. Funct. Anal., 105 (1992), 1-41.  doi: 10.1016/0022-1236(92)90070-Y.  Google Scholar

[27]

M. MussoF. Pacard and J. Wei, Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schr¨odinger equation, J. Eur. Math. Soc., 14 (2012), 1923-1953.  doi: 10.4171/JEMS/351.  Google Scholar

[28]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[29]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[30]

O. Rey, The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct.Anal., 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

G. Talenti, Best constant in Sobolev inequality, Ann. Math. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[32]

W. C. Troy, Bounded solutions of $\Delta u+|u{{|}^{p-1}}u-|u{{|}^{q-1}}u=0$ in the supercritical case, SIAM J. Math. Anal., 21 (1990), 1326-1334.  doi: 10.1137/0521073.  Google Scholar

[1]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[2]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[3]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[7]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[8]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[9]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[11]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[12]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[13]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[18]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[19]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[20]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (109)
  • HTML views (66)
  • Cited by (2)

Other articles
by authors

[Back to Top]