We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators.
We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.
Citation: |
Y. A. Abramovich and C. D. Aliprantis,
An Invitation to Operator Theory American Mathematical Society, Providence, 2002.
doi: 10.1090/gsm/050.![]() ![]() ![]() |
|
M. Akian and S. Gaubert, Policy iteration for perfect information stochastic mean payoff games with bounded first return times is strongly polynomial, preprint, arXiv: 1310.4953
![]() |
|
M. Akian
, S. Gaubert
and A. Hochart
, Ergodicity conditions for zero-sum games, Discrete and Continuous Dynamical Systems -A, 35 (2015)
, 3901-3931.
doi: 10.3934/dcds.2015.35.3901.![]() ![]() ![]() |
|
M. Akian, S. Gaubert and C. Walsh, Discrete max-plus spectral theory, in Idempotent Mathematics and Mathematical Physics, G. L. Litvinov and V. P. Maslov, Eds, Contemporary Mathematics, AMS, 377 (2005), 53–77, arXiv: math.SP/0405225
doi: 10.1090/conm/377/6982.![]() ![]() |
|
M. Akian, S. Gaubert and R. D. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, preprint, arXiv: 1112.5968
![]() |
|
C. D. Aliprantis and K. C. Border,
Infinite Dimensional Analysis, A Hitchhiker's Guide Third Edition, Springer, 2006.
![]() ![]() |
|
C. D. Aliprantis, D. J. Brown and O. Burkinshaw,
Existence and Optimality of Competitive Equilibria Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-61521-4.![]() ![]() ![]() |
|
C. D. Aliprantis and O. Burkinshaw,
Positive Operators Reprint of the 1985 original, Springer, Dordrecht, 2006.
doi: 10.1007/978-1-4020-5008-4.![]() ![]() ![]() |
|
C. D. Aliprantis and O. Burkinshaw,
Locally Solid Riesz Spaces with Applications to Economics Second edition, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/105.![]() ![]() ![]() |
|
C. D. Aliprantis and R. Tourky,
Cones and Duality American Mathematical Society, Providence, 2007.
doi: 10.1090/gsm/084.![]() ![]() ![]() |
|
J. Appell
, E. De Pascale
and A. Vignoli
, A comparison of different spectra for nonlinear operators, Nonlinear Anal., 40 (2000)
, 73-90.
doi: 10.1016/S0362-546X(00)85005-1.![]() ![]() ![]() |
|
J. Appell, E. De Pascale and A. Vignoli,
Nonlinear Spectral Theory Walter de Gruyter GmbH and Co. KG, Berlin, 2004.
doi: 10.1515/9783110199260.![]() ![]() ![]() |
|
J. Appell
, E. Giorgieri
and M. Väth
, Nonlinear spectral theory for homogeneous operators, Nonlinear Funct. Anal. Appl., 7 (2002)
, 589-618.
![]() ![]() |
|
F. L. Baccelli, G. Cohen, G. -J. Olsder and J. -P. Quadrat,
Synchronization and Linearity John Wiley, Chichester, New York, 1992.
![]() ![]() |
|
R. B. Bapat
, A max version of the Perron-Frobenius theorem, Linear Algebra Appl., 275/276 (1998)
, 3-18.
doi: 10.1016/S0024-3795(97)10057-X.![]() ![]() ![]() |
|
P. Butkovič,
Max-linear Systems: Theory and Algorithms Springer-Verlag, London, 2010.
doi: 10.1007/978-1-84996-299-5.![]() ![]() ![]() |
|
P. Butkovič
, S. Gaubert
and R. A. Cuninghame-Green
, Reducible spectral theory with applications to the robustness of matrices in max-algebra, SIAM J. Matrix Anal. Appl., 31 (2009)
, 1412-1431.
doi: 10.1137/080731232.![]() ![]() ![]() |
|
W. Feng
, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal., 2 (1997)
, 163-183.
doi: 10.1155/S1085337597000328.![]() ![]() ![]() |
|
M. Furi
, M. Martelli
and A. Vignoli
, Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Pura Appl., 118 (1978)
, 229-294.
doi: 10.1007/BF02415132.![]() ![]() ![]() |
|
G. Gripenberg
, On the definition of the cone spectral radius, Proc. Amer. Math. Soc., 143 (2015)
, 1617-1625.
doi: 10.1090/S0002-9939-2014-12375-6.![]() ![]() ![]() |
|
J. Gunawardena, Cycle times and fixed points of min-max functions, In G. Cohen and J. -P.
Quadrat, editors, 11th International Conference on Analysis and Optimization of Systems,
Springer LNCIS, 199 (1994), 266–272.
![]() |
|
M. de Jeu
and M. Messerschmidt
, A strong open mapping theorem for surjections from cones
onto Banach spaces, Advances in Math., 259 (2014)
, 43-66.
doi: 10.1016/j.aim.2014.03.008.![]() ![]() ![]() |
|
V. N. Kolokoltsov and V. P. Maslov,
Idempotent Analysis and Its Applications Kluwer Acad. Publ., 1997.
doi: 10.1007/978-94-015-8901-7.![]() ![]() ![]() |
|
B. Lemmens and R. D. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math.
Soc., 141 (2013), 2741–2754, arXiv: 1107.4532.
doi: 10.1090/S0002-9939-2013-11520-0.![]() ![]() ![]() |
|
B. Lemmens and R. D. Nussbaum,
Nonlinear Perron-Frobenius Theory Cambridge University Press, 2012.
doi: 10.1017/CBO9781139026079.![]() ![]() ![]() |
|
J. Lindenstrauss and L. Tzafriri,
Classical Banach Spaces I and II A reprint of the 1977 and 1979 editions, Springer, 1996.
![]() |
|
B. Lins
and R. D. Nussbaum
, Denjoy-Wolff theorems, Hilbert metric nonexpansive maps on
reproduction-decimation operators, J. Funct. Anal., 254 (2008)
, 2365-2386.
doi: 10.1016/j.jfa.2008.02.001.![]() ![]() ![]() |
|
G. L. Litvinov
, The Maslov dequantization, idempotent and tropical mathematics: A brief
introduction, J. Math. Sci., 140 (2007)
, 426-444.
doi: 10.1007/s10958-007-0450-5.![]() ![]() ![]() |
|
G. L. Litvinov, V. P. Maslov and G. B. Shpiz, Idempotent functional analysis: An algebraic
approach, Math Notes, 69 (2001), 696–729, arXiv: math.FA/0009128.
doi: 10.1023/A:1010266012029.![]() ![]() ![]() |
|
G. L. Litvinov and V. P. Maslov (eds.), Idempotent mathematics and mathematical physics,
Contemp. Math., Amer. Math. Soc., Providence, RI, 377 (2005), 1–17.
doi: 10.1090/conm/377/6982.![]() ![]() ![]() |
|
J. Mallet-Paret
and R. D. Nussbaum
, Eigenvalues for a class of homogeneous cone maps
arising from max-plus operators, Discrete and Continuous Dynamical Systems, 8 (2002)
, 519-562.
doi: 10.3934/dcds.2002.8.519.![]() ![]() ![]() |
|
J. Mallet-Paret
and R. D. Nussbaum
, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Applications, 7 (2010)
, 103-143.
doi: 10.1007/s11784-010-0010-3.![]() ![]() ![]() |
|
J. Mallet-Paret
and R. D. Nussbaum
, Inequivalent measures of noncompactness, Ann. Mat. Pura Appl., 190 (2011)
, 453-488.
doi: 10.1007/s10231-010-0158-x.![]() ![]() ![]() |
|
J. Mallet-Paret
and R. D. Nussbaum
, Inequivalent measures of noncompactness and the radius
of the essential radius, Proc. Amer. Math. Soc., 139 (2011)
, 917-930.
doi: 10.1090/S0002-9939-2010-10511-7.![]() ![]() ![]() |
|
V. Müller
and A. Peperko
, Generalized spectral radius and its max algebra version, Linear
Algebra Appl, Linear Algebra Appl., 439 (2013)
, 1006-1016.
doi: 10.1016/j.laa.2012.09.024.![]() ![]() ![]() |
|
V. Müller
and A. Peperko
, On the spectrum in max-algebra, Linear Algebra Appl., 485 (2015)
, 250-266.
doi: 10.1016/j.laa.2015.07.013.![]() ![]() ![]() |
|
R. D. Nussbaum, Eigenvalues of nonlinear operators and the linear Krein-Rutman, in: Fixed
Point Theory (Sherbrooke, Quebec, 1980), E. Fadell and G. Fournier, editors, Lecture notes
in Mathematics, Springer-Verlag, Berlin, 886 (1981), 309–330.
![]() ![]() |
|
R. D. Nussbaum
, Periodic points of positive linear operators and Perron-Frobenius operators, Integral Equations Operator Theory, 39 (2001)
, 41-97.
doi: 10.1007/BF01192149.![]() ![]() ![]() |
|
L. Pachter and B. Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge
Univ. Press, New York, (2005), 125–159.
doi: 10.1017/CBO9780511610684. 007.![]() ![]() ![]() |
|
P. Santucci
and M. Väth
, On the definition of eigenvalues of nonlinear operators, Nonlinear Anal., 40 (2000)
, 565-576.
doi: 10.1016/S0362-546X(00)85034-8.![]() ![]() ![]() |
|
G. B. Shpiz
, An eigenvector existence theorem in idempotent analysis, Mathematical Notes, 82 (2007)
, 410-417.
doi: 10.1134/S0001434607090131.![]() ![]() ![]() |
|
W. Wnuk,
Banach Lattices with Order Continuous Norms Polish Scientific Publ., PWN, Warszawa, 1999.
![]() |