In this paper, we prove Strichartz estimates for $N$-body Schrödinger operators, provided that interaction potentials are small enough. Our tools are new Strichartz estimates with frozen spatial variables, and its improvement in the $V_S^p$-norm of Koch and Tataru [
Citation: |
M. Beceanu
and M. Goldberg
, Schrödinger dispersive estimates for a scaling-critical class of
potentials, Comm. Math. Phys., 314 (2012)
, 471-481.
doi: 10.1007/s00220-012-1435-x.![]() ![]() ![]() |
|
J. Bergh and J. Löfström, Interpolation Spaces – An Introduction, Grundlehren der Mathematischen Wissenschaften, 1976, x+207 pp.
![]() ![]() |
|
N. Burq
, F. Planchon
, J. Stalker
and S. Tahvildar-Zadeh
, Strichartz estimates for the wave
and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003)
, 519-549.
doi: 10.1016/S0022-1236(03)00238-6.![]() ![]() ![]() |
|
N. Burq
, F. Planchon
, J. Stalker
and S. Tahvildar-Zadeh
, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004)
, 1665-1680.
doi: 10.1512/iumj.2004.53.2541.![]() ![]() ![]() |
|
T. Chen
, Y. Hong
and N. Pavlović
, Global well-posedness of the NLS system for infinitely
many fermions, Arch. Ration. Mech. Anal., 224 (2017)
, 91-123.
doi: 10.1007/s00205-016-1068-x.![]() ![]() ![]() |
|
T. Chen
and N. Pavlović
, Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from
manybody dynamics in d=3 based on spacetime norms, Ann. Henri Poincaré, 15 (2014)
, 543-588.
doi: 10.1007/s00023-013-0248-6.![]() ![]() ![]() |
|
X. Chen
and J. Holmer
, On the Klainerman-Machedon conjecture for the quantum BBGKY
hierarchy with self-interaction, J. Eur. Math. Soc. (JEMS), 18 (2016)
, 1161-1200.
doi: 10.4171/JEMS/610.![]() ![]() ![]() |
|
D. Fujiwara
, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980)
, 559-600.
doi: 10.1215/S0012-7094-80-04734-1.![]() ![]() ![]() |
|
M. Goldberg
, Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials, Amer. J. Math., 128 (2006)
, 731-750.
doi: 10.1353/ajm.2006.0025.![]() ![]() ![]() |
|
M. Goldberg
, Dispersive bounds for the three-dimensional Schrödinger equation with almost
critical potentials, Geom. Funct. Anal., 16 (2006)
, 517-536.
doi: 10.1007/s00039-006-0568-5.![]() ![]() ![]() |
|
M. Goldberg
and W. Schlag
, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys., 251 (2004)
, 157-178.
doi: 10.1007/s00220-004-1140-5.![]() ![]() ![]() |
|
G. Graf
, Asymptotic completeness for $N$-body short-range quantum systems: A new proof, Comm. Math. Phys., 132 (1990)
, 73-101.
doi: 10.1007/BF02278000.![]() ![]() ![]() |
|
M. Hadac
, S. Herr
and H. Koch
, Well-posedness and scattering for the KP-Ⅱ equation in a
critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009)
, 917-941.
doi: 10.1016/j.anihpc.2008.04.002.![]() ![]() ![]() |
|
S. Herr
, D. Tataru
and N. Tzvetkov
, Global well-posedness of the energy-critical nonlinear
Schrödinger equation with small initial data in ${{H}^{\text{1}}}\left( {{\mathbb{T}}^{\text{3}}} \right)$, Duke Math. J., 159 (2011)
, 329-349.
doi: 10.1215/00127094-1415889.![]() ![]() ![]() |
|
J.-L. Journe
, A. Soffer
and C. Sogge
, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991)
, 573-604.
doi: 10.1002/cpa.3160440504.![]() ![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998)
, 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
|
K. Kirkpatrick
, B. Schlein
and G. Staffilani
, Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, Amer. J. Math., 133 (2011)
, 91-130.
doi: 10.1353/ajm.2011.0004.![]() ![]() ![]() |
|
S. Klainerman
and M. Machedon
, On the uniqueness of solutions to the Gross-Pitaevskii
hierarchy, Comm. Math. Phys., 279 (2008)
, 169-185.
doi: 10.1007/s00220-008-0426-4.![]() ![]() ![]() |
|
H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces Int. Math. Res. Not. , 16 (2007), Art. ID rnm053, 36 pp.
doi: 10.1093/imrn/rnm053.![]() ![]() ![]() |
|
H. Koch, D. Tataru and M. Vişan, Dispersive equations and nonlinear waves: Generalized Korteweg-de Vries, nonlinear Schrödinger, wave and Schrödinger maps Oberwolfach Seminars, 45 (2014).
doi: 10.1007/978-3-0348-0736-4.![]() ![]() |
|
I. Rodnianski
and W. Schlag
, Time decay for solutions of Schrödinger equations with rough
and time-dependent potentials, Invent. Math., 155 (2004)
, 451-513.
doi: 10.1007/s00222-003-0325-4.![]() ![]() ![]() |
|
W. Schlag, Dispersive estimates for Schrödinger operators: A survey, Mathematical aspects
of nonlinear dispersive equations, Ann. of Math. Stud., Princeton Univ. Press, 163 (2007),
255–285.
![]() ![]() |
|
I. M. Sigal
and A. Soffer
, The N-particle scattering problem: Asymptotic completeness for
short-range systems, Ann. of Math., 126 (1987)
, 35-108.
doi: 10.2307/1971345.![]() ![]() ![]() |