-
Previous Article
Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data
- DCDS Home
- This Issue
-
Next Article
Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion
Constructing attracting cycles for Halley and Schröder maps of polynomials
Department of Mathematics and Computer Science, Freed-Hardeman University, Henderson, TN 38340, USA |
We show that for any set of $n$ distinct points in the complex plane, there exists a polynomial $p$ of degree at most $n+1$ so that the corresponding Halley and Schröder map for $p$ has the given points as a super-attracting cycle. This improves the result in [
References:
[1] |
S. Amat, S. Busquier and S. Plaza,
A construction of attracting periodic orbits for some classical third-order iterative methods, J. Comput. Appl. Math., 189 (2006), 22-33.
doi: 10.1016/j.cam.2005.03.049. |
[2] |
J. Campbell and J. Collins,
Specifying attracting cycles for Newton maps of polynomials, J. Difference Equ. Appl., 19 (2013), 1361-1379.
doi: 10.1080/10236198.2012.751987. |
[3] |
D. Hilbert,
Über die vollen Invariantensysteme, Math. Ann., 42 (1893), 313-373.
doi: 10.1007/BF01444162. |
[4] |
K. Kneisl,
Julia sets for the super-Newton method, Cauchy's method and Halley's method, Chaos, 11 (2001), 359-370.
doi: 10.1063/1.1368137. |
[5] |
S. Plaza and N. Romero,
Attracting cycles for the relaxed Newton's method, J. Comput. Appl. Math., 235 (2011), 3238-3244.
doi: 10.1016/j.cam.2011.01.010. |
[6] |
S. Plaza and V. Vergara,
Existence of attracting periodic orbits for the Newton method, Sci. Ser. A Math. Sci., 7 (2001), 31-36.
|
show all references
References:
[1] |
S. Amat, S. Busquier and S. Plaza,
A construction of attracting periodic orbits for some classical third-order iterative methods, J. Comput. Appl. Math., 189 (2006), 22-33.
doi: 10.1016/j.cam.2005.03.049. |
[2] |
J. Campbell and J. Collins,
Specifying attracting cycles for Newton maps of polynomials, J. Difference Equ. Appl., 19 (2013), 1361-1379.
doi: 10.1080/10236198.2012.751987. |
[3] |
D. Hilbert,
Über die vollen Invariantensysteme, Math. Ann., 42 (1893), 313-373.
doi: 10.1007/BF01444162. |
[4] |
K. Kneisl,
Julia sets for the super-Newton method, Cauchy's method and Halley's method, Chaos, 11 (2001), 359-370.
doi: 10.1063/1.1368137. |
[5] |
S. Plaza and N. Romero,
Attracting cycles for the relaxed Newton's method, J. Comput. Appl. Math., 235 (2011), 3238-3244.
doi: 10.1016/j.cam.2011.01.010. |
[6] |
S. Plaza and V. Vergara,
Existence of attracting periodic orbits for the Newton method, Sci. Ser. A Math. Sci., 7 (2001), 31-36.
|
[1] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[2] |
Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations and Control Theory, 2013, 2 (4) : 621-630. doi: 10.3934/eect.2013.2.621 |
[3] |
Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 |
[4] |
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 |
[5] |
Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423 |
[6] |
Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219 |
[7] |
Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems and Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019 |
[8] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2483-2504. doi: 10.3934/jimo.2021077 |
[9] |
Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537 |
[10] |
Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007 |
[11] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[12] |
R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39 |
[13] |
Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems and Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43 |
[14] |
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143 |
[15] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
[16] |
Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937 |
[17] |
Yongsheng Song. Stein’s method for the law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 199-212. doi: 10.3934/puqr.2021010 |
[18] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[19] |
Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 |
[20] |
Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]