November  2017, 37(11): 5503-5520. doi: 10.3934/dcds.2017239

Eulerian dynamics with a commutator forcing Ⅱ: Flocking

1. 

Department of Mathematics, Statistics, and Computer Science, M/C 249, University of Illinois, Chicago, IL 60607, USA

2. 

Center for Scientific Computation and Mathematical Modeling (CSCAMM), Department of Mathematics, Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20742-4015, USA

3. 

Current address: Institute for Theoretical Studies (ITS), ETH-Zurich, Clausiusstrasse 47, CH-8092 Zurich, Switzerland

* Corresponding author: Eitan Tadmor

Received  January 2017 Revised  June 2017 Published  July 2017

Fund Project: Research was supported in part by NSF grant DMS 1515705 (RS) and by NSF grants DMS16-13911, RNMS11-07444 (KI-Net) and ONR grant N00014-1512094 (ET).

We continue our study of one-dimensional class of Euler equations, introduced in [11], driven by a forcing with a commutator structure of the form $[{\mathcal L}_φ, u](ρ)$, where $u$ is the velocity field and ${\mathcal L}_φ$ belongs to a rather general class of convolution operators depending on interaction kernels $φ$.

In this paper we quantify the large-time behavior of such systems in terms of fast flocking, for two prototypical sub-classes of kernels: bounded positive $φ$'s, and singular $φ(r) = r^{-(1+α)}$ of order $α∈ [1, 2)$ associated with the action of the fractional Laplacian ${\mathcal L}_φ=-(-\partial_{xx})^{α/2}$. Specifically, we prove fast velocity alignment as the velocity $u(·, t)$ approaches a constant state, $u \to \bar{u}$, with exponentially decaying slope and curvature bounds $|{u_x}( \cdot ,t){|_\infty } + |{u_{xx}}( \cdot ,t){|_\infty }\lesssim{e^{ - \delta t}}$. The alignment is accompanied by exponentially fast flocking of the density towards a fixed traveling state $ρ(·, t) -{ρ_{∞}}(x -\bar{u} t) \to 0$.

Citation: Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239
References:
[1]

J.A. CarrilloY.-P. ChoiE. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206.  doi: 10.1142/S0218202516500068.  Google Scholar

[2]

J. CarrilloY.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298.  doi: 10.1007/978-3-319-49996-3_7.  Google Scholar

[3]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[4]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701.05155. Google Scholar

[5]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[6]

C. ImbertR. Shvydkoy and F. Vigneron, Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758.  doi: 10.5802/afst.1509.  Google Scholar

[7]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[8]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[9]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[10]

R.W. Schwab and L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772.  doi: 10.2140/apde.2016.9.727.  Google Scholar

[11]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26.  doi: 10.1093/imatrm/tnx001.  Google Scholar

[12]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706.08246. Google Scholar

[13]

E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp. doi: 10.1098/rsta.2013.0401.  Google Scholar

show all references

References:
[1]

J.A. CarrilloY.-P. ChoiE. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206.  doi: 10.1142/S0218202516500068.  Google Scholar

[2]

J. CarrilloY.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298.  doi: 10.1007/978-3-319-49996-3_7.  Google Scholar

[3]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[4]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701.05155. Google Scholar

[5]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[6]

C. ImbertR. Shvydkoy and F. Vigneron, Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758.  doi: 10.5802/afst.1509.  Google Scholar

[7]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[8]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[9]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[10]

R.W. Schwab and L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772.  doi: 10.2140/apde.2016.9.727.  Google Scholar

[11]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26.  doi: 10.1093/imatrm/tnx001.  Google Scholar

[12]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706.08246. Google Scholar

[13]

E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp. doi: 10.1098/rsta.2013.0401.  Google Scholar

[1]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[2]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[3]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[8]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[9]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[10]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[13]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[14]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[15]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[16]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[17]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[18]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[19]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[20]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (78)
  • HTML views (69)
  • Cited by (16)

Other articles
by authors

[Back to Top]