November  2017, 37(11): 5521-5539. doi: 10.3934/dcds.2017240

The 3D liquid crystal system with Cannone type initial data and large vertical velocity

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Received  February 2017 Revised  June 2017 Published  July 2017

The hydrodynamic theory of the nematic liquid crystals was established by Ericksen [4] and Leslie [8]. In this paper, based on a new technique, we obtain global well-posedness to a simplified model introduced by Lin [9] in the critical Besov space with Cannone type initial data and large vertical velocity, which improves the main result in [15]. In addition, the small condition on $u_0$ is independent of another small condition on $d_0-\bar{d}_0$, which is quite different from the previous works [15,16].

Citation: Renhui Wan. The 3D liquid crystal system with Cannone type initial data and large vertical velocity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5521-5539. doi: 10.3934/dcds.2017240
References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, in: Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13 (1997), 515-541.  doi: 10.4171/RMI/229.  Google Scholar

[3]

R. Danchin, Local theory in critical spaces for the compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.  Google Scholar

[5]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236.   Google Scholar

[6]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[8]

F. Leslie, Theory of flow phenomenum in liquid crystals. In The Theory of Liquid Crystals, London-New York: Academic Press, 4 (1979), 1–81. Google Scholar

[9]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[10]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[11]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst. A, 2 (1996), 1-22.   Google Scholar

[12]

F. LinJ. Lin and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math., 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.  Google Scholar

[15]

Q. LiuT. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differential Equations, 258 (2015), 1519-1547.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[16]

Q. LiuT. Zhang and J. Zhao, Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework, Discrete Contin. Dyn. Syst., 36 (2016), 371-402.  doi: 10.3934/dcds.2016.36.371.  Google Scholar

[17]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[18]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity, J. Math. Phys., 56 (2015), 091512, 18pp. doi: 10.1063/1.4931467.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, in: Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13 (1997), 515-541.  doi: 10.4171/RMI/229.  Google Scholar

[3]

R. Danchin, Local theory in critical spaces for the compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.  Google Scholar

[5]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236.   Google Scholar

[6]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[7]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[8]

F. Leslie, Theory of flow phenomenum in liquid crystals. In The Theory of Liquid Crystals, London-New York: Academic Press, 4 (1979), 1–81. Google Scholar

[9]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[10]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[11]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst. A, 2 (1996), 1-22.   Google Scholar

[12]

F. LinJ. Lin and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math., 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.  Google Scholar

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.  Google Scholar

[15]

Q. LiuT. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differential Equations, 258 (2015), 1519-1547.  doi: 10.1016/j.jde.2014.11.002.  Google Scholar

[16]

Q. LiuT. Zhang and J. Zhao, Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework, Discrete Contin. Dyn. Syst., 36 (2016), 371-402.  doi: 10.3934/dcds.2016.36.371.  Google Scholar

[17]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[18]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity, J. Math. Phys., 56 (2015), 091512, 18pp. doi: 10.1063/1.4931467.  Google Scholar

[1]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[2]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[3]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[4]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[5]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[6]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[7]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[8]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[9]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[10]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[11]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[12]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[13]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[14]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[15]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[16]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[17]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[18]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[19]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[20]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (35)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]