November  2017, 37(11): 5521-5539. doi: 10.3934/dcds.2017240

The 3D liquid crystal system with Cannone type initial data and large vertical velocity

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Received  February 2017 Revised  June 2017 Published  July 2017

The hydrodynamic theory of the nematic liquid crystals was established by Ericksen [4] and Leslie [8]. In this paper, based on a new technique, we obtain global well-posedness to a simplified model introduced by Lin [9] in the critical Besov space with Cannone type initial data and large vertical velocity, which improves the main result in [15]. In addition, the small condition on $u_0$ is independent of another small condition on $d_0-\bar{d}_0$, which is quite different from the previous works [15,16].

Citation: Renhui Wan. The 3D liquid crystal system with Cannone type initial data and large vertical velocity. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5521-5539. doi: 10.3934/dcds.2017240
References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, in: Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13 (1997), 515-541.  doi: 10.4171/RMI/229.

[3]

R. Danchin, Local theory in critical spaces for the compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[5]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236. 

[6]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.

[7]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.

[8]

F. Leslie, Theory of flow phenomenum in liquid crystals. In The Theory of Liquid Crystals, London-New York: Academic Press, 4 (1979), 1–81.

[9]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.

[10]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[11]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst. A, 2 (1996), 1-22. 

[12]

F. LinJ. Lin and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math., 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.

[15]

Q. LiuT. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differential Equations, 258 (2015), 1519-1547.  doi: 10.1016/j.jde.2014.11.002.

[16]

Q. LiuT. Zhang and J. Zhao, Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework, Discrete Contin. Dyn. Syst., 36 (2016), 371-402.  doi: 10.3934/dcds.2016.36.371.

[17]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.  doi: 10.1007/s00205-010-0343-5.

[18]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity, J. Math. Phys., 56 (2015), 091512, 18pp. doi: 10.1063/1.4931467.

show all references

References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, in: Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13 (1997), 515-541.  doi: 10.4171/RMI/229.

[3]

R. Danchin, Local theory in critical spaces for the compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[5]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236. 

[6]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.  doi: 10.1007/s00526-010-0331-5.

[7]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.

[8]

F. Leslie, Theory of flow phenomenum in liquid crystals. In The Theory of Liquid Crystals, London-New York: Academic Press, 4 (1979), 1–81.

[9]

F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.

[10]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[11]

F. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst. A, 2 (1996), 1-22. 

[12]

F. LinJ. Lin and C. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.

[13]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math., 31 (2010), 921-938.  doi: 10.1007/s11401-010-0612-5.

[14]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.  doi: 10.1002/cpa.21583.

[15]

Q. LiuT. Zhang and J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differential Equations, 258 (2015), 1519-1547.  doi: 10.1016/j.jde.2014.11.002.

[16]

Q. LiuT. Zhang and J. Zhao, Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework, Discrete Contin. Dyn. Syst., 36 (2016), 371-402.  doi: 10.3934/dcds.2016.36.371.

[17]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.  doi: 10.1007/s00205-010-0343-5.

[18]

C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity, J. Math. Phys., 56 (2015), 091512, 18pp. doi: 10.1063/1.4931467.

[1]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[2]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[3]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[4]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[5]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[6]

Hong Chen, Xin Zhong. Local well-posedness to the 2D Cauchy problem of non-isothermal nonhomogeneous nematic liquid crystal flows with vacuum at infinity. Communications on Pure and Applied Analysis, 2022, 21 (9) : 3141-3169. doi: 10.3934/cpaa.2022093

[7]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[8]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations and Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[9]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[10]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[11]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[12]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076

[13]

Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184

[14]

Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147

[15]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[16]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[18]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[19]

Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338

[20]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (202)
  • HTML views (73)
  • Cited by (1)

Other articles
by authors

[Back to Top]