Advanced Search
Article Contents
Article Contents

The index bundle and multiparameter bifurcation for discrete dynamical systems

Abstract Full Text(HTML) Related Papers Cited by
  • We develop a K-theoretic approach to multiparameter bifurcation theory of homoclinic solutions of discrete non-autonomous dynamical systems from a branch of stationary solutions. As a byproduct we obtain a family index theorem for asymptotically hyperbolic linear dynamical systems which is of independent interest. In the special case of a single parameter, our bifurcation theorem weakens the assumptions in previous work by Pejsachowicz and the first author.

    Mathematics Subject Classification: Primary: 58E07; Secondary: 37C29, 19L20, 47A53.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Abbondandolo  and  P. Majer , On the global stable manifold, Studia Math., 177 (2006) , 113-131.  doi: 10.4064/sm177-2-2.
      D. Arlt , Zusammenziehbarkeit der allgemeinen linearen Gruppe des Raumes $c_0$ der Nullfolgen, Invent. Math., 1 (1966) , 36-44.  doi: 10.1007/BF01389697.
      M. F. Atiyah , Thom complexes, Proc. London Math. Soc., 11 (1961) , 291-310.  doi: 10.1112/plms/s3-11.1.291.
      M. F. Atiyah  and  I. M. Singer , The index of elliptic operators. Ⅳ, Ann. of Math., 93 (1971) , 119-138.  doi: 10.2307/1970756.
      M. F. Atiyah, K-Theory, Addison-Wesley, 1989.
      T. Bartsch , The global structure of the zero set of a family of semilinear Fredholm maps, Nonlinear Anal, 71 (1991) , 313-331.  doi: 10.1016/0362-546X(91)90074-B.
      G. E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, 139 Springer, 1993. doi: 10.1007/978-1-4757-6848-0.
      W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Math., vol. 629, Springer-Verlag, New York, 1978.
      M. Crabb and I. James, Fibrewise Homotopy Theory, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1998. doi: 10.1007/978-1-4471-1265-5.
      A. Dold , ÜUber fasernweise Homotopieäquivalenz von Faserräumen, Math. Z., 62 (1955) , 111-136.  doi: 10.1007/BF01180627.
      P. M. Fitzpatrick  and  J. Pejsachowicz , Nonorientability of the index bundle and several-parameter bifurcation, J. Funct. Anal., 98 (1991) , 42-58.  doi: 10.1016/0022-1236(91)90090-R.
      D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981.
      W. Hurewicz and H. Wallmann, Dimension Theory, Princeton Mathematical Series, 4 Princeton University Press, 1941.
      T. Hüls , Homoclinic trajectories of non-autonomous maps, J. Difference Equ. Appl., 17 (2011) , 9-31.  doi: 10.1080/10236190902932742.
      K. Jänich , Vektorraumbündel und der Raum der Fredholmoperatoren, Math. Ann., 161 (1965) , 129-142.  doi: 10.1007/BF01360851.
      S. Lang, Differential and Riemannian Manifolds, Third edition, Graduate Texts in Mathematics, 160 Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4182-9.
      H. B. Lawson and M. -L. Michelsohn, Spin Geometry, Princeton Mathematical Series, 38 Princeton University Press, Princeton, NJ, 1989.
      J. P. May, A Concise Course in Algebraic Topology, Chicago University Press, 2nd edition, 1999.
      J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University Press, 1974.
      K. J. Palmer , Exponential dichotomies and transversal homoclinic points, Journal of Differential Equations, 55 (1984) , 225-256.  doi: 10.1016/0022-0396(84)90082-2.
      K. J. Palmer , Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, 1 (1988) , 265-306. 
      E. Park, Complex Topological K-theory, Cambridge Studies in Advanced Mathematics, 111 Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511611476.
      J. Pejsachowicz , K-theoretic methods in bifurcation theory, Fixed point theory and its applications (Berkeley, CA, 1986), Contemp. Math, 72 (1988) , 193-206.  doi: 10.1090/conm/072/956492.
      J. Pejsachowicz , Index bundle, Leray-Schauder reduction and bifurcation of solutions of nonlinear elliptic boundary value problems, Topol. Methods Nonlinear Anal., 18 (2001) , 243-267.  doi: 10.12775/TMNA.2001.033.
      J. Pejsachowicz , Bifurcation of homoclinics, Proc. Amer. Math. Soc., 136 (2008) , 111-118.  doi: 10.1090/S0002-9939-07-09088-0.
      J. Pejsachowicz, Bifurcation of homoclinics of Hamiltonian systems, Proc. Amer. Math. Soc., 136 (2008).
      J. Pejsachowicz , Bifurcation of Fredholm maps Ⅰ. The index bundle and bifurcation, Topol. Methods Nonlinear Anal, 38 (2011) , 115-168. 
      J. Pejsachowicz , Bifurcation of Fredholm maps Ⅱ. The dimension of the set of bifurcation points, Topol. Methods Nonlinear Anal., 38 (2011) , 291-305. 
      J. Pejsachowicz  and  R. Skiba , Global bifurcation of homoclinic trajectories of discrete dynamical systems, Central European Journal of Mathematics, 10 (2012) , 2088-2109.  doi: 10.2478/s11533-012-0121-8.
      J. Pejsachowicz  and  R. Skiba , Topology and homoclinic trajectories of discrete dynamical systems, Discrete and Continuous Dynamical Systems, Series S, 6 (2013) , 1077-1094.  doi: 10.3934/dcdss.2013.6.1077.
      J. Pejsachowicz , The index bundle and bifurcation from infinity of solutions of nonlinear elliptic boundary value problems, J. Fixed Point Theory Appl., 17 (2015) , 43-64.  doi: 10.1007/s11784-015-0237-0.
      O. Perron , Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930) , 703-728.  doi: 10.1007/BF01194662.
      C. Pötzsche , Nonautonomous bifurcation of bounded solutions Ⅰ: A Lyapunov-Schmidt approach, Discrete Contin. Dyn. Syst., Ser. B, 14 (2010) , 739-776.  doi: 10.3934/dcdsb.2010.14.739.
      C. Pötzsche , Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal., 10 (2011) , 937-961.  doi: 10.3934/cpaa.2011.10.937.
      C. Pötzsche , Bifurcations in nonautonomous dynamical systems: Results and tools in discrete time, Proceedings of the International Workshop Future Directions in Difference Equations, 69 (2011) , 163-212. 
      S. Secchi  and  C. A. Stuart , Global Bifurcation of homoclinic solutions of Hamiltonian systems, Discrete Contin. Dyn. Syst., 9 (2003) , 1493-1518.  doi: 10.3934/dcds.2003.9.1493.
      M. Starostka  and  N. Waterstraat , A remark on singular sets of vector bundle morphisms, Eur. J. Math., 1 (2015) , 154-159.  doi: 10.1007/s40879-014-0010-8.
      N. Waterstraat , The index bundle for Fredholm morphisms, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011) , 299-315. 
      N. Waterstraat, A remark on bifurcation of Fredholm maps accepted for publication in Adv. Nonlinear Anal., arXiv: 1602.02320 [math. FA] doi: 10.1515/anona-2016-0067.
      M. G. Zaidenberg , S. G. Krein , P. A. Kuchment  and  A. A. Pankov , Banach bundles and linear operators, Russian Math. Surveys, 30 (1975) , 101-157. 
  • 加载中

Article Metrics

HTML views(131) PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint