November  2017, 37(11): 5693-5706. doi: 10.3934/dcds.2017246

2-manifolds and inverse limits of set-valued functions on intervals

1. 

University of Auckland, Private Bag 92019, Auckland, New Zealand

2. 

University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom

* Corresponding author: Sina Greenwood

Received  April 2017 Published  July 2017

Suppose for each $n\in\mathbb{N}$, $f_n \colon [0,1] \to 2^{[0,1]}$ is a function whose graph $\Gamma(f_n) = \left\lbrace (x,y) \in [0,1]^2 \colon y \in f_n(x)\right\rbrace$ is closed in $[0,1]^2$ (here $2^{[0,1]}$ is the space of non-empty closed subsets of $[0,1]$). We show that the generalized inverse limit $\varprojlim (f_n) = \left\lbrace (x_n) \in [0,1]^\mathbb{N} \colon \forall n \in \mathbb{N},\ x_n \in f_n(x_{n+1})\right\rbrace$ of such a sequence of functions cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and hence it is impossible to obtain a sphere.

Citation: Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246
References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993.  Google Scholar

[2]

I. Banič and J. Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21.  doi: 10.1016/j.topol.2015.04.009.  Google Scholar

[3]

I. BaničM. Črepnjak and V. Nall, Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111.  doi: 10.1016/j.topol.2016.01.007.  Google Scholar

[4]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.  Google Scholar

[5]

J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-34364-3.  Google Scholar

[6]

S. Greenwood and J. Kennedy, Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9.  doi: 10.1016/j.topol.2014.01.016.  Google Scholar

[7]

S. Greenwood and J. Kennedy, Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43.  doi: 10.4064/fm241-4-2016.  Google Scholar

[8]

G. Guzik, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396.  doi: 10.1016/j.jmaa.2016.11.072.  Google Scholar

[9]

K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004.  Google Scholar

[10]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941.  Google Scholar

[11]

A. Illanes, A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993.  doi: 10.1090/S0002-9939-2011-10876-1.  Google Scholar

[12]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[13]

W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130.   Google Scholar

[14]

H. Kato, On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99.  doi: 10.4064/fm233-4-2016.  Google Scholar

[15]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26.  doi: 10.1017/etds.2016.73.  Google Scholar

[16]

R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250.  doi: 10.24033/bsmf.2185.  Google Scholar

[17]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231.  doi: 10.1016/j.topol.2003.12.008.  Google Scholar

[18]

R. P. McGehee and T. Wiandt, Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47.  doi: 10.1080/00207210500171620.  Google Scholar

[19]

R. McGehee, Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[20]

V. Nall, More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050.   Google Scholar

[21]

A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.  Google Scholar

[22]

T. Wiandt, Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722.  doi: 10.1080/10236190701809315.  Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993.  Google Scholar

[2]

I. Banič and J. Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21.  doi: 10.1016/j.topol.2015.04.009.  Google Scholar

[3]

I. BaničM. Črepnjak and V. Nall, Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111.  doi: 10.1016/j.topol.2016.01.007.  Google Scholar

[4]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.  Google Scholar

[5]

J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-34364-3.  Google Scholar

[6]

S. Greenwood and J. Kennedy, Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9.  doi: 10.1016/j.topol.2014.01.016.  Google Scholar

[7]

S. Greenwood and J. Kennedy, Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43.  doi: 10.4064/fm241-4-2016.  Google Scholar

[8]

G. Guzik, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396.  doi: 10.1016/j.jmaa.2016.11.072.  Google Scholar

[9]

K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004.  Google Scholar

[10]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941.  Google Scholar

[11]

A. Illanes, A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993.  doi: 10.1090/S0002-9939-2011-10876-1.  Google Scholar

[12]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[13]

W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130.   Google Scholar

[14]

H. Kato, On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99.  doi: 10.4064/fm233-4-2016.  Google Scholar

[15]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26.  doi: 10.1017/etds.2016.73.  Google Scholar

[16]

R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250.  doi: 10.24033/bsmf.2185.  Google Scholar

[17]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231.  doi: 10.1016/j.topol.2003.12.008.  Google Scholar

[18]

R. P. McGehee and T. Wiandt, Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47.  doi: 10.1080/00207210500171620.  Google Scholar

[19]

R. McGehee, Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[20]

V. Nall, More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050.   Google Scholar

[21]

A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.  Google Scholar

[22]

T. Wiandt, Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722.  doi: 10.1080/10236190701809315.  Google Scholar

Figure 1.  A torus as a GIL on intervals
Figure 2.  A circle as a binary Mahavier product of simply-connected spaces
[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[14]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (86)
  • Cited by (3)

Other articles
by authors

[Back to Top]