November  2017, 37(11): 5781-5795. doi: 10.3934/dcds.2017251

Non-degenerate locally connected models for plane continua and Julia sets

1. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA

2. 

Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva St., 119048 Moscow, Russia

* Corresponding author: Alexander Blokh

Received  August 2016 Revised  June 2017 Published  July 2017

Fund Project: The first named author was partially supported by NSF grant DMS-1201450.
The second named author was partially supported by NSF grant DMS-0906316.
The third named author was partially supported by the Russian Academic Excellence Project '5-100'.

Every plane continuum admits a finest locally connected model. The latter is a locally connected continuum onto which the original continuum projects in a monotone fashion. It may so happen that the finest locally connected model is a singleton. For example, this happens if the original continuum is indecomposable. In this paper, we provide sufficient conditions for the existence of a non-degenerate model depending on the existence of subcontinua with certain properties. Applications to complex polynomial dynamics are discussed.

Citation: Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251
References:
[1]

A. Blokh and L. Oversteegen, Backward stability for polynomial maps with locally connected Julia sets, Trans. Amer. Math. Soc., 356 (2004), 119-133.  doi: 10.1090/S0002-9947-03-03415-9.  Google Scholar

[2]

A. BlokhC. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Math, 226 (2011), 1621-1661.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. BlokhC. Curry and L. Oversteegen, Finitely Suslinian models for planar compacta with applications to Julia sets, Proc. Amer. Math. Soc., 141 (2013), 1437-1449.  doi: 10.1090/S0002-9939-2012-11607-7.  Google Scholar

[4]

A. BlokhL. OversteegenR. Ptacek and V. Timorin, Quadratic-like dynamics of cubic polynomials, Communications in Mathematical Physics, 341 (2016), 733-749.  doi: 10.1007/s00220-015-2559-6.  Google Scholar

[5]

A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston Journal of Mathematics, 36 (2010), 469-476.   Google Scholar

[6]

B. Branner and J. Hubbard, The iteration of cubic polynomials, Part Ⅰ: The global topology of parameter space, Acta Math., 160 (1988), 143-206.  doi: 10.1007/BF02392275.  Google Scholar

[7]

H. Cremer, Zum Zentrumproblem, Math. Ann., 98 (1928), 151-163.  doi: 10.1007/BF01451586.  Google Scholar

[8]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup.(4), 18 (1985), 287-343.  doi: 10.24033/asens.1491.  Google Scholar

[9]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[10]

K. Kuratowski, Topology Ⅱ, Academic Press, 1968, New York and London, ⅶ-608.  Google Scholar

[11]

J. Milnor, Dynamics in one Complex Variable, Princeton University Press, Princeton, 2006, ⅷ+304pp.  Google Scholar

show all references

References:
[1]

A. Blokh and L. Oversteegen, Backward stability for polynomial maps with locally connected Julia sets, Trans. Amer. Math. Soc., 356 (2004), 119-133.  doi: 10.1090/S0002-9947-03-03415-9.  Google Scholar

[2]

A. BlokhC. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Math, 226 (2011), 1621-1661.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. BlokhC. Curry and L. Oversteegen, Finitely Suslinian models for planar compacta with applications to Julia sets, Proc. Amer. Math. Soc., 141 (2013), 1437-1449.  doi: 10.1090/S0002-9939-2012-11607-7.  Google Scholar

[4]

A. BlokhL. OversteegenR. Ptacek and V. Timorin, Quadratic-like dynamics of cubic polynomials, Communications in Mathematical Physics, 341 (2016), 733-749.  doi: 10.1007/s00220-015-2559-6.  Google Scholar

[5]

A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston Journal of Mathematics, 36 (2010), 469-476.   Google Scholar

[6]

B. Branner and J. Hubbard, The iteration of cubic polynomials, Part Ⅰ: The global topology of parameter space, Acta Math., 160 (1988), 143-206.  doi: 10.1007/BF02392275.  Google Scholar

[7]

H. Cremer, Zum Zentrumproblem, Math. Ann., 98 (1928), 151-163.  doi: 10.1007/BF01451586.  Google Scholar

[8]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup.(4), 18 (1985), 287-343.  doi: 10.24033/asens.1491.  Google Scholar

[9]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[10]

K. Kuratowski, Topology Ⅱ, Academic Press, 1968, New York and London, ⅶ-608.  Google Scholar

[11]

J. Milnor, Dynamics in one Complex Variable, Princeton University Press, Princeton, 2006, ⅷ+304pp.  Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (69)
  • HTML views (68)
  • Cited by (1)

[Back to Top]