November  2017, 37(11): 5797-5817. doi: 10.3934/dcds.2017252

Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions

Department of Engineering, University of Messina, C.da Di Dio, Sant'Agata, 98166 Messina, Italy

Received  September 2016 Revised  June 2017 Published  July 2017

In this paper, mixed elliptic problems involving the p-Laplacian and with nonhomogeneous boundary conditions are investigated. At first, the existence of one non-trivial solution, under a suitable behaviour on the nonlinearity and without requiring neither conditions at zero nor conditions at infinity, is established. Then, by adding a condition at infinity on the nonlinearity, also a second non-trivial solution is guaranteed. Some special cases are pointed out as, in particular, the existence of one non-trivial solution when the datum is $(p-1)-$sublinear at zero and the existence of two non-trivial solutions when the nonlinear term is again $(p-1)-$sublinear at zero and, in addition, more than $(p-1)-$superlinear at infinity. As a consequence, the existence of two non-trivial solutions for concave-convex nonlinearities is emphasized. Finally, the case of a simple $(p-1)-$superlinearity at infinity is considered and it is also observed that the same results hold when the nonlinear behaviour, described before for the datum, is instead assumed by the nonhomogeneous Neumann boundary conditions. Concrete examples of applications are also given. The approach is based on variational methods and critical point theory. Precisely, a non-zero local minimum theorem and a two non-zero critical points theorem are applied.

Citation: Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252
References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

G. BarlettaR. Livrea and N. S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497-1516.   Google Scholar

[4]

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.  doi: 10.1016/j.na.2011.12.003.  Google Scholar

[5]

G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.  doi: 10.1515/anona-2012-0003.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math., 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

G. BonannoP. Candito and G. D'Aguí, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.  Google Scholar

[8]

G. Bonanno and G. D'Aguí, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464.  doi: 10.4171/ZAA/1573.  Google Scholar

[9]

G. BonannoG. D'Aguì and N. S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the $p-$Laplacian, Adv. Nonlinear Stud., 15 (2015), 939-950.  doi: 10.1515/ans-2015-0410.  Google Scholar

[10]

G. BonannoG. D'Aguì and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl., 1 (2016), 125-143.   Google Scholar

[11]

G. BonannoR. Livrea and M. Schechter, Some notes on a superlinear second order Hamiltonian system, Manuscripta Math., (2016), 1-19.  doi: 10.1007/s00229-016-0903-6.  Google Scholar

[12]

V. Bonfim and A. F. Neves, A one-dimensional heat equation with mixed boundary conditions, J. Differential Equations, 139 (1997), 319-338.  doi: 10.1006/jdeq.1997.3299.  Google Scholar

[13]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal., 199 (2003), 468-507.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[14]

G. D'Aguì, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math., 2 (2011), 237-248.  doi: 10.1515/APAM.2010.043.  Google Scholar

[15]

G. D'AguìB. Di Bella and S. Tersian, Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Methods Appl. Sci., 39 (2016), 1060-1068.  doi: 10.1002/mma.3545.  Google Scholar

[16]

J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 183 (2001), 231-244.  doi: 10.1006/jfan.2000.3729.  Google Scholar

[17]

J. Garcia AzoreroA. MalchiodiL. Montoro and I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions, Ann. I. H. Poincaré AN, 27 (2010), 37-56.  doi: 10.1016/j.anihpc.2009.06.005.  Google Scholar

[18]

R. Haller-DintelmannH. C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, J. Math. Pures. Appl., 89 (2008), 25-48.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[19]

S. A. Marano and S. Mosconi, Non-Smooth critical point theory on closed convex sets, Commun. Pure Appl. Anal., 13 (2014), 1187-1202.  doi: 10.3934/cpaa.2014.13.1187.  Google Scholar

[20]

S. A. Marano and N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal., 1 (2012), 257-275.  doi: 10.1515/anona-2012-0005.  Google Scholar

[21]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc., 359 (2007), 4143-4182.  doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[22]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[23]

G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.  doi: 10.1080/03605309708821287.  Google Scholar

show all references

References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

G. BarlettaR. Livrea and N. S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497-1516.   Google Scholar

[4]

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.  doi: 10.1016/j.na.2011.12.003.  Google Scholar

[5]

G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.  doi: 10.1515/anona-2012-0003.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math., 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

G. BonannoP. Candito and G. D'Aguí, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.  Google Scholar

[8]

G. Bonanno and G. D'Aguí, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464.  doi: 10.4171/ZAA/1573.  Google Scholar

[9]

G. BonannoG. D'Aguì and N. S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the $p-$Laplacian, Adv. Nonlinear Stud., 15 (2015), 939-950.  doi: 10.1515/ans-2015-0410.  Google Scholar

[10]

G. BonannoG. D'Aguì and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl., 1 (2016), 125-143.   Google Scholar

[11]

G. BonannoR. Livrea and M. Schechter, Some notes on a superlinear second order Hamiltonian system, Manuscripta Math., (2016), 1-19.  doi: 10.1007/s00229-016-0903-6.  Google Scholar

[12]

V. Bonfim and A. F. Neves, A one-dimensional heat equation with mixed boundary conditions, J. Differential Equations, 139 (1997), 319-338.  doi: 10.1006/jdeq.1997.3299.  Google Scholar

[13]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal., 199 (2003), 468-507.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[14]

G. D'Aguì, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math., 2 (2011), 237-248.  doi: 10.1515/APAM.2010.043.  Google Scholar

[15]

G. D'AguìB. Di Bella and S. Tersian, Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Methods Appl. Sci., 39 (2016), 1060-1068.  doi: 10.1002/mma.3545.  Google Scholar

[16]

J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 183 (2001), 231-244.  doi: 10.1006/jfan.2000.3729.  Google Scholar

[17]

J. Garcia AzoreroA. MalchiodiL. Montoro and I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions, Ann. I. H. Poincaré AN, 27 (2010), 37-56.  doi: 10.1016/j.anihpc.2009.06.005.  Google Scholar

[18]

R. Haller-DintelmannH. C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, J. Math. Pures. Appl., 89 (2008), 25-48.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[19]

S. A. Marano and S. Mosconi, Non-Smooth critical point theory on closed convex sets, Commun. Pure Appl. Anal., 13 (2014), 1187-1202.  doi: 10.3934/cpaa.2014.13.1187.  Google Scholar

[20]

S. A. Marano and N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal., 1 (2012), 257-275.  doi: 10.1515/anona-2012-0005.  Google Scholar

[21]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc., 359 (2007), 4143-4182.  doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[22]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[23]

G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.  doi: 10.1080/03605309708821287.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[10]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (79)
  • HTML views (70)
  • Cited by (1)

Other articles
by authors

[Back to Top]