November  2017, 37(11): 5797-5817. doi: 10.3934/dcds.2017252

Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions

Department of Engineering, University of Messina, C.da Di Dio, Sant'Agata, 98166 Messina, Italy

Received  September 2016 Revised  June 2017 Published  July 2017

In this paper, mixed elliptic problems involving the p-Laplacian and with nonhomogeneous boundary conditions are investigated. At first, the existence of one non-trivial solution, under a suitable behaviour on the nonlinearity and without requiring neither conditions at zero nor conditions at infinity, is established. Then, by adding a condition at infinity on the nonlinearity, also a second non-trivial solution is guaranteed. Some special cases are pointed out as, in particular, the existence of one non-trivial solution when the datum is $(p-1)-$sublinear at zero and the existence of two non-trivial solutions when the nonlinear term is again $(p-1)-$sublinear at zero and, in addition, more than $(p-1)-$superlinear at infinity. As a consequence, the existence of two non-trivial solutions for concave-convex nonlinearities is emphasized. Finally, the case of a simple $(p-1)-$superlinearity at infinity is considered and it is also observed that the same results hold when the nonlinear behaviour, described before for the datum, is instead assumed by the nonhomogeneous Neumann boundary conditions. Concrete examples of applications are also given. The approach is based on variational methods and critical point theory. Precisely, a non-zero local minimum theorem and a two non-zero critical points theorem are applied.

Citation: Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252
References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

G. BarlettaR. Livrea and N. S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497-1516.   Google Scholar

[4]

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.  doi: 10.1016/j.na.2011.12.003.  Google Scholar

[5]

G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.  doi: 10.1515/anona-2012-0003.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math., 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

G. BonannoP. Candito and G. D'Aguí, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.  Google Scholar

[8]

G. Bonanno and G. D'Aguí, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464.  doi: 10.4171/ZAA/1573.  Google Scholar

[9]

G. BonannoG. D'Aguì and N. S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the $p-$Laplacian, Adv. Nonlinear Stud., 15 (2015), 939-950.  doi: 10.1515/ans-2015-0410.  Google Scholar

[10]

G. BonannoG. D'Aguì and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl., 1 (2016), 125-143.   Google Scholar

[11]

G. BonannoR. Livrea and M. Schechter, Some notes on a superlinear second order Hamiltonian system, Manuscripta Math., (2016), 1-19.  doi: 10.1007/s00229-016-0903-6.  Google Scholar

[12]

V. Bonfim and A. F. Neves, A one-dimensional heat equation with mixed boundary conditions, J. Differential Equations, 139 (1997), 319-338.  doi: 10.1006/jdeq.1997.3299.  Google Scholar

[13]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal., 199 (2003), 468-507.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[14]

G. D'Aguì, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math., 2 (2011), 237-248.  doi: 10.1515/APAM.2010.043.  Google Scholar

[15]

G. D'AguìB. Di Bella and S. Tersian, Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Methods Appl. Sci., 39 (2016), 1060-1068.  doi: 10.1002/mma.3545.  Google Scholar

[16]

J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 183 (2001), 231-244.  doi: 10.1006/jfan.2000.3729.  Google Scholar

[17]

J. Garcia AzoreroA. MalchiodiL. Montoro and I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions, Ann. I. H. Poincaré AN, 27 (2010), 37-56.  doi: 10.1016/j.anihpc.2009.06.005.  Google Scholar

[18]

R. Haller-DintelmannH. C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, J. Math. Pures. Appl., 89 (2008), 25-48.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[19]

S. A. Marano and S. Mosconi, Non-Smooth critical point theory on closed convex sets, Commun. Pure Appl. Anal., 13 (2014), 1187-1202.  doi: 10.3934/cpaa.2014.13.1187.  Google Scholar

[20]

S. A. Marano and N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal., 1 (2012), 257-275.  doi: 10.1515/anona-2012-0005.  Google Scholar

[21]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc., 359 (2007), 4143-4182.  doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[22]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[23]

G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.  doi: 10.1080/03605309708821287.  Google Scholar

show all references

References:
[1]

A. AmbrosettiH. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

G. BarlettaR. Livrea and N. S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497-1516.   Google Scholar

[4]

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.  doi: 10.1016/j.na.2011.12.003.  Google Scholar

[5]

G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.  doi: 10.1515/anona-2012-0003.  Google Scholar

[6]

G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math., 80 (2003), 424-429.  doi: 10.1007/s00013-003-0479-8.  Google Scholar

[7]

G. BonannoP. Candito and G. D'Aguí, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.  Google Scholar

[8]

G. Bonanno and G. D'Aguí, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464.  doi: 10.4171/ZAA/1573.  Google Scholar

[9]

G. BonannoG. D'Aguì and N. S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the $p-$Laplacian, Adv. Nonlinear Stud., 15 (2015), 939-950.  doi: 10.1515/ans-2015-0410.  Google Scholar

[10]

G. BonannoG. D'Aguì and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl., 1 (2016), 125-143.   Google Scholar

[11]

G. BonannoR. Livrea and M. Schechter, Some notes on a superlinear second order Hamiltonian system, Manuscripta Math., (2016), 1-19.  doi: 10.1007/s00229-016-0903-6.  Google Scholar

[12]

V. Bonfim and A. F. Neves, A one-dimensional heat equation with mixed boundary conditions, J. Differential Equations, 139 (1997), 319-338.  doi: 10.1006/jdeq.1997.3299.  Google Scholar

[13]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal., 199 (2003), 468-507.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[14]

G. D'Aguì, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math., 2 (2011), 237-248.  doi: 10.1515/APAM.2010.043.  Google Scholar

[15]

G. D'AguìB. Di Bella and S. Tersian, Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Methods Appl. Sci., 39 (2016), 1060-1068.  doi: 10.1002/mma.3545.  Google Scholar

[16]

J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 183 (2001), 231-244.  doi: 10.1006/jfan.2000.3729.  Google Scholar

[17]

J. Garcia AzoreroA. MalchiodiL. Montoro and I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions, Ann. I. H. Poincaré AN, 27 (2010), 37-56.  doi: 10.1016/j.anihpc.2009.06.005.  Google Scholar

[18]

R. Haller-DintelmannH. C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, J. Math. Pures. Appl., 89 (2008), 25-48.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[19]

S. A. Marano and S. Mosconi, Non-Smooth critical point theory on closed convex sets, Commun. Pure Appl. Anal., 13 (2014), 1187-1202.  doi: 10.3934/cpaa.2014.13.1187.  Google Scholar

[20]

S. A. Marano and N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal., 1 (2012), 257-275.  doi: 10.1515/anona-2012-0005.  Google Scholar

[21]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc., 359 (2007), 4143-4182.  doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[22]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[23]

G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.  doi: 10.1080/03605309708821287.  Google Scholar

[1]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[2]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[3]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[4]

P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175

[5]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[6]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

[7]

Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47

[8]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[9]

Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733

[10]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[11]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[12]

Weishi Liu. Geometric approach to a singular boundary value problem with turning points. Conference Publications, 2005, 2005 (Special) : 624-633. doi: 10.3934/proc.2005.2005.624

[13]

Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 637-646. doi: 10.3934/jimo.2017065

[14]

Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161

[15]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[16]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[17]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[18]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[19]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[20]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (34)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]