November  2017, 37(11): 5819-5841. doi: 10.3934/dcds.2017253

Energy transfer model for the derivative nonlinear Schrödinger equations on the torus

Department of Mathematics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan

* Dedicated to Professor Yoshio Tsutsumi on his 60th birthday

Received  September 2016 Revised  June 2017 Published  July 2017

Fund Project: The author is supported by supported by JSPS KAKENHI Grant Number 10322794.

We consider the nonlinear derivative Schrödinger equation with a quintic nonlinearity, on the one dimensional torus. We exhibit that the nonlinear dynamic properties of the particular solution consisting of four frequency modes initially excited, whose frequencies include the resonant clusters and phase matched resonant interactions of nonlinearities. The proof is based on the analysis of resonant dynamics via a finite dimensional ordinary differential system.

Citation: Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253
References:
[1]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[2]

P. Clarkson and C. Cosgrove, Painlevé analysis of the non-linear Schrödinger family of equations, J. Phys. A: Math. Gen., 20 (1987), 2003-2024.  doi: 10.1088/0305-4470/20/8/020.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[6]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.  doi: 10.1007/s00222-010-0242-2.  Google Scholar

[7]

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.  doi: 10.1016/j.anihpc.2012.01.005.  Google Scholar

[8]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.  doi: 10.1137/070689139.  Google Scholar

[9]

E. Haus and M. Procesi, KAM for beating solutions of the quintic NLS, Comm. Math. Phys., 354 (2017), 1101-1132.  doi: 10.1007/s00220-017-2925-7.  Google Scholar

[10]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[11]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[12]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. , (2006), Art. ID 96763, 33 pp. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[13]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schrödinger equation with derivative in $H(\mathbb{R})^{\frac{1}{2}}$, J. Differential Equations, 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[14]

A. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., 14 (2012), 1275-1330.  doi: 10.4171/JEMS/333.  Google Scholar

[15]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[16]

H. Takaoka, Well-posedness for the one dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

[17]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{1/2}$, J. Differential Equations, 260 (2016), 818-859.  doi: 10.1016/j.jde.2015.09.011.  Google Scholar

[18]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on $\mathbf{T}$, Funkcial. Ekvac., 53 (2010), 51-88.  doi: 10.1619/fesi.53.51.  Google Scholar

show all references

References:
[1]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[2]

P. Clarkson and C. Cosgrove, Painlevé analysis of the non-linear Schrödinger family of equations, J. Phys. A: Math. Gen., 20 (1987), 2003-2024.  doi: 10.1088/0305-4470/20/8/020.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[6]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.  doi: 10.1007/s00222-010-0242-2.  Google Scholar

[7]

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.  doi: 10.1016/j.anihpc.2012.01.005.  Google Scholar

[8]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.  doi: 10.1137/070689139.  Google Scholar

[9]

E. Haus and M. Procesi, KAM for beating solutions of the quintic NLS, Comm. Math. Phys., 354 (2017), 1101-1132.  doi: 10.1007/s00220-017-2925-7.  Google Scholar

[10]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[11]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[12]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. , (2006), Art. ID 96763, 33 pp. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[13]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schrödinger equation with derivative in $H(\mathbb{R})^{\frac{1}{2}}$, J. Differential Equations, 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[14]

A. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., 14 (2012), 1275-1330.  doi: 10.4171/JEMS/333.  Google Scholar

[15]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[16]

H. Takaoka, Well-posedness for the one dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

[17]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{1/2}$, J. Differential Equations, 260 (2016), 818-859.  doi: 10.1016/j.jde.2015.09.011.  Google Scholar

[18]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on $\mathbf{T}$, Funkcial. Ekvac., 53 (2010), 51-88.  doi: 10.1619/fesi.53.51.  Google Scholar

[1]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[9]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[10]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[13]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[14]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[18]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]