In this paper, we study the dynamics of a non-autonomous reaction diffusion model with the fractional diffusion on the whole space. We firstly prove the existence of a $(L^2,L^2)$ pullback $\mathscr{D}_μ$ -attractor of this model. Then we show that the pullback $\mathscr{D}_μ$ -attractor attract the $\mathscr{D}_μ$ class (especially all $L^2$ -bounded set) in $L^{2+δ}$-norm for any $δ∈[0,∞)$. Moreover, the solution of the model is shown to be continuous in $H^s$ with respect to initial data under a slightly stronger condition on external forcing term. As an application, we prove that the $(L^2,L^2)$ pullback $\mathscr{D}_{μ}$-attractor indeed attract the class of $\mathscr{D}_{μ}$ in $H^s$ -norm, and thus the existence of a $(L^2, H^s)$ pullback $\mathscr{D}_μ$ -attractor is obtained.
Citation: |
[1] | R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975. |
[2] | M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046. |
[3] | D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781. |
[4] | H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. |
[5] | J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. |
[6] | C. Bardos, P. Penel, U. Frisch and P.-L. Sulem, Modified dissipativity for a nonlinear evolution equations arising in turbulence, Arch. Rational Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598. |
[7] | P. Biler, C. Imbert and G. Karch, Barenblatt profiles for a nonlocal porous medium equation, C. R. Math. Acad. Sci. Paris., 349 (2011), 641-645. doi: 10.1016/j.crma.2011.06.003. |
[8] | M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767. doi: 10.3934/dcds.2015.35.5725. |
[9] | J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\to \text{1}$ and applications, J. Anal. Math., 87 (2002), 77-101. doi: 10.1007/BF02868470. |
[10] | L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. |
[11] | L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., 15 (2013), 1701-1746. doi: 10.4171/JEMS/401. |
[12] | L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. |
[13] | D. Cao, C. Sun and M. Yang, Dynamical for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. |
[14] | T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111. |
[15] | A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4. |
[16] | V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002. |
[17] | J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526404. |
[18] | P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Lecture Notes in Mathematics, vol. 1871, Springer-Verlag, Berlin, 2006, 1–43. doi: 10.1007/11545989_1. |
[19] | H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. |
[20] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. |
[21] | T. Dlotko, M. Kania and C. Sun, Pseudodifferential parabolic equations; two examples, Topol. Methods Nonlinear Anal., 43 (2014), 463-492. doi: 10.12775/TMNA.2014.028. |
[22] | J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331. doi: 10.1007/s00205-006-0429-2. |
[23] | N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. Ⅰ, Ⅱ, Ⅲ, Imperial College Press, London, 2005. doi: 10.1142/9781860947155. |
[24] | S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581. |
[25] | G. Karch, Nonlinear evolution equations with anomalous diffusion, Qualitative Properties of Solutions to Partial Differential Equations, J. Nečas Center for Mathematical Modeling, Charles University, Prague, 5 (2009), 25–68. |
[26] | A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3. |
[27] | P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, Vol. 176, 2011. doi: 10.1090/surv/176. |
[28] | G. Lukaszewicz, On pullback attractors in $H_0^1$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644. doi: 10.1142/S0218127410027258. |
[29] | G. Lukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357. doi: 10.1016/j.na.2010.03.023. |
[30] | V. I. Mazya and T. O. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238. doi: 10.1006/jfan.2002.3955. |
[31] | A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017. |
[32] | J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0. |
[33] | C. Sun and Y. Yuan, $L^p$ -type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052. doi: 10.1017/S0308210515000177. |
[34] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[35] | H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78. Birkhuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1. |
[36] | T. Trujillo and B. Wang, Continuity of strong solutions of reaction-diffusion equation in initial data, Nonlinear Anal., 69 (2008), 2525-2532. doi: 10.1016/j.na.2007.08.032. |
[37] | E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44. |
[38] | J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear partial differential equations: the Abel Symposium 2010 (ed. H. Kenneth), Holden, Helge & Karlsen, Springer, 2012,271–298. doi: 10.1007/978-3-642-25361-4_15. |
[39] | J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857. |
[40] | B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52. doi: 10.1016/S0167-2789(98)00304-2. |