\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice

  • * Corresponding author: Artur O. Lopes

    * Corresponding author: Artur O. Lopes
The authors are partially supported by CNPq and BREUDS.
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we describe several different meanings for the concept of Gibbs measure on the lattice $\mathbb{N}$ in the context of finite alphabets (or state space). We compare and analyze these ''in principle" distinct notions: DLR-Gibbs measures, Thermodynamic Limit and eigenprobabilities for the dual of the Ruelle operator (also called conformal measures).

    Among other things we extended the classical notion of a Gibbsian specification on $\mathbb{N}$ in such way that the similarity of many results in Statistical Mechanics and Dynamical System becomes apparent. One of our main result claims that the construction of the conformal Measures in Dynamical Systems for Walters potentials, using the Ruelle operator, can be formulated in terms of Specification. We also describe the Ising model, with $1/r^{2+\varepsilon}$ interaction energy, in the Thermodynamic Formalism setting and prove that its associated potential is in Walters space -we present an explicit expression. We also provide an alternative way for obtaining the uniqueness of the DLR-Gibbs measures.

    Mathematics Subject Classification: Primary: 28Dxx, 37D35; Secondary: 82B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. Baladi, Positive Transfer Operators and Decay of Correlations, vol. 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633.
    [2] T. Bousch, La condition de Walters, Ann. Sci. École Norm. Sup., 34 (2001), 287-311.  doi: 10.1016/S0012-9593(00)01062-4.
    [3] A. Bovier, Statistical Mechanics of Disordered Systems, vol. 18 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2006, A mathematical perspective. doi: 10.1017/CBO9780511616808.
    [4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470 of Lecture Notes in Mathematics, revised edition, Springer-Verlag, Berlin, 2008, With a preface by David Ruelle, Edited by Jean-René Chazottes.
    [5] L. CiolettiM. DenkerA. O. Lopes and M. Stadlbauer, Spectral properties of the ruelle operator for product-type potentials on shift spaces, Journal of the London Mathematical Society, 95 (2017), 684-704.  doi: 10.1112/jlms.12031.
    [6] L. Cioletti and A. O. Lopes, Phase transitions in one-dimensional translation invariant systems: A Ruelle operator approach, J. Stat. Phys., 159 (2015), 1424-1455.  doi: 10.1007/s10955-015-1202-4.
    [7] L. Cioletti and A. O. Lopes, Ruelle operator for continuous potentials and DLR-Gibbs measures, preprint, arXiv: 1608.03881.
    [8] L. Cioletti and A. O. Lopes, Correlation inequalities and monotonicity properties of the ruelle operator, preprint, arXiv: 1703.06126.
    [9] R. L. Dobrushin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Verojatnost. i Primenen, 13 (1968), 201-229. 
    [10] R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theory of Probability & Its Applications, 15 (1970), 458-486. 
    [11] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 2006, Reprint of the 1985 original. doi: 10.1007/3-540-29060-5.
    [12] H. Föllmer, Phase transition and Martin boundary, Lecture Notes in Math., 465 (1975), 305-317. 
    [13] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction., Cambridge University Press, To appear 2017.
    [14] H. -O. Georgii, Gibbs Measures and Phase Transitions, vol. 9 of de Gruyter Studies in Mathematics, 2nd edition, Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110250329.
    [15] C. Gruber, A. Hintermann and D. Merlini, Group Analysis of Classical Lattice Systems, Springer-Verlag, Berlin-New York, 1977, With a foreword by Ph. Choquard, Lecture Notes in Physics, Vol. 60.
    [16] R. B. Israel, Convexity in the Theory of Lattice Gases, Princeton University Press, Princeton, N. J., 1979, Princeton Series in Physics, With an introduction by Arthur S. Wightman.
    [17] H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. I, Phys. Rev., 60 (1941), 252-262.  doi: 10.1103/PhysRev.60.252.
    [18] O. E. Lanford Ⅲ and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys., 13 (1969), 194–215, URL http://projecteuclid.org/euclid.cmp/1103841575. doi: 10.1007/BF01645487.
    [19] F. Ledrappier, Principe variationnel et systémes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 185-202.  doi: 10.1007/BF00533471.
    [20] E. W. Montroll, Statistical mechanics of nearest neighbor systems, The Journal of Chemical Physics, 9 (1941), 706-721.  doi: 10.1063/1.1750981.
    [21] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65 (1944), 117-149.  doi: 10.1103/PhysRev.65.117.
    [22] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, (1990), 268pp.
    [23] C. Preston, Random Fields, Lecture Notes in Mathematics, Vol. 534, Springer-Verlag, Berlin-New York, 1976.
    [24] D. Ruelle, A variational formulation of equilibrium statistical mechanics and the Gibbs phase rule, Comm. Math. Phys., 5 (1967), 324-329.  doi: 10.1007/BF01646446.
    [25] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.  doi: 10.1007/BF01654281.
    [26] D. Ruelle, Thermodynamic formalism, vol. 5 of Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass., 1978, The mathematical structures of classical equilibrium statistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo Rota.
    [27] D. Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (2002), 887-895. 
    [28] D. Ruelle, Thermodynamic Formalism, 2nd edition, Cambridge University Press, Cambridge, 2004, The mathematical structures of equilibrium statistical mechanics. doi: 10.1017/CBO9780511617546.
    [29] O. Sarig, Lecture notes on thermodynamic formalism for topological markov shifts, Penn State.
    [30] J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64. 
    [31] A. C. D. van EnterR. Fernández and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory, J. Statist. Phys., 72 (1993), 879-1167.  doi: 10.1007/BF01048183.
    [32] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971.  doi: 10.2307/2373682.
    [33] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153.  doi: 10.1090/S0002-9947-1978-0466493-1.
    [34] P. Walters, Convergence of the Ruelle operator for a function satisfying Bowen's condition, Trans. Amer. Math. Soc., 353 (2001), 327-347.  doi: 10.1090/S0002-9947-00-02656-8.
    [35] P. Walters, Regularity conditions and Bernoulli properties of equilibrium states and $g$ -measures, J. London Math. Soc., 71 (2005), 379-396.  doi: 10.1112/S0024610704006076.
    [36] P. Walters, A natural space of functions for the Ruelle operator theorem, Ergodic Theory Dynam. Systems, 27 (2007), 1323-1348.  doi: 10.1017/S0143385707000028.
  • 加载中
SHARE

Article Metrics

HTML views(1753) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return