-
Previous Article
Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$
- DCDS Home
- This Issue
-
Next Article
$\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem
A generalization of Douady's formula
1. | División Académica de Ciencias Básicas, UJAT, Km. 1, Carretera Cunduacán-Jalpa de Méndez, C.P. 86690, Cunduacán Tabasco, México |
2. | Instituto de Matemáticas de la UNAM, Unidad Cuernavaca, Av. Universidad s/n. Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos, México |
The Douady's formula was defined for the external argument on the boundary points of the main hyperbolic component $W_0$ of the Mandelbrot set $M$ and it is given by the map $T(θ)=1/2+θ/4$. We extend this formula to the boundary of all hyperbolic components of $M$ and we give a characterization of the parameter in $M$ with these external arguments.
References:
[1] |
G. Blé,
External arguments and invariant measures for the quadratic family, Disc. and Cont. Dyn. Sys., 11 (2004), 241-260.
doi: 10.3934/dcds.2004.11.241. |
[2] |
A. Douady,
Systémes dynamiques holomorphes, Astérisque, (1983), 105-106.
|
[3] |
A. Douady,
Algorithm for computing angles in the Mandelbrot set, Chaotic Dynamics and Fractals, Atlanta 1985, Notes Rep. Math. Sci. Eng., 2 (1986), 155-168.
|
[4] |
A. Douady and J. H. Hubbard, Étude Dynamique Des Polynômes Complexes I et II, Département de Mathématiques, Orsay, 1985. |
[5] |
J. Graczyk and S. Smirnov,
Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415.
doi: 10.1007/s00222-008-0152-8. |
[6] |
J. H. Hubbard,
Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz, Topological Methods in Modern Mathematics, (1993), 467-511.
|
[7] |
M. Lyubich,
Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.
doi: 10.1007/BF02392694. |
[8] |
M. Martens and T. Nowicki,
Invariant measures for typical quadratic maps, Asterisque, 261 (2000), 239-252.
|
[9] |
J. Milnor, Dynamics in One Complex Variable, Introductory lectures. Friedr. Vieweg & Sohn, Braunschweig, 1999. |
[10] |
T. Nowicki and S. van Strien,
Invariant measures exist under a summability condition for unimodal maps, Invent. Math., 105 (1991), 123-136.
doi: 10.1007/BF01232258. |
show all references
The authors are grateful to CONACYT for financial support CB-2012/181247 and CB-2015/255633 given to this work
References:
[1] |
G. Blé,
External arguments and invariant measures for the quadratic family, Disc. and Cont. Dyn. Sys., 11 (2004), 241-260.
doi: 10.3934/dcds.2004.11.241. |
[2] |
A. Douady,
Systémes dynamiques holomorphes, Astérisque, (1983), 105-106.
|
[3] |
A. Douady,
Algorithm for computing angles in the Mandelbrot set, Chaotic Dynamics and Fractals, Atlanta 1985, Notes Rep. Math. Sci. Eng., 2 (1986), 155-168.
|
[4] |
A. Douady and J. H. Hubbard, Étude Dynamique Des Polynômes Complexes I et II, Département de Mathématiques, Orsay, 1985. |
[5] |
J. Graczyk and S. Smirnov,
Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415.
doi: 10.1007/s00222-008-0152-8. |
[6] |
J. H. Hubbard,
Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz, Topological Methods in Modern Mathematics, (1993), 467-511.
|
[7] |
M. Lyubich,
Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.
doi: 10.1007/BF02392694. |
[8] |
M. Martens and T. Nowicki,
Invariant measures for typical quadratic maps, Asterisque, 261 (2000), 239-252.
|
[9] |
J. Milnor, Dynamics in One Complex Variable, Introductory lectures. Friedr. Vieweg & Sohn, Braunschweig, 1999. |
[10] |
T. Nowicki and S. van Strien,
Invariant measures exist under a summability condition for unimodal maps, Invent. Math., 105 (1991), 123-136.
doi: 10.1007/BF01232258. |
[1] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[2] |
Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451 |
[3] |
Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 |
[4] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
[5] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[6] |
Gamaliel Blé. External arguments and invariant measures for the quadratic family. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 241-260. doi: 10.3934/dcds.2004.11.241 |
[7] |
Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35 |
[8] |
Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207 |
[9] |
Stefano Galatolo, Hugo Marsan. Quadratic response and speed of convergence of invariant measures in the zero-noise limit. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5303-5327. doi: 10.3934/dcds.2021078 |
[10] |
Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107 |
[11] |
Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567 |
[12] |
Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013 |
[13] |
Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897 |
[14] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[15] |
Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365 |
[16] |
Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12. |
[17] |
Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345 |
[18] |
Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033 |
[19] |
Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008 |
[20] |
Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]