December  2017, 37(12): 6227-6242. doi: 10.3934/dcds.2017269

Stability of half-degree point defect profiles for 2-D nematic liquid crystal

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012-1185, USA

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

3. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  December 2016 Revised  July 2017 Published  August 2017

Fund Project: W. Wang is partly supported by NSF of China under Grant 11501502 and the Fundamental Research Funds for the Central Universities 2016QNA3004. P. Zhang is partly supported by NSF of China under Grant 11421101 and 11421110001. Z. Zhang is partly supported by NSF of China under Grant 11371039 and 11425103

In this paper, we prove the stability of half-degree point defect profiles in $\mathbb{R}^2$ for the nematic liquid crystal within Landau-de Gennes model.

Citation: Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269
References:
[1]

P. BaumanJ. Park and D. Philips, Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., 205 (2012), 795-826. doi: 10.1007/s00205-012-0530-7. Google Scholar

[2]

P. Biscari and G. G. Peroli, A hierarchy of defects in biaxial nematics, Commun. Math. Phys, 186 (1997), 381-392. doi: 10.1007/s002200050113. Google Scholar

[3]

G. Canevari, Biaxiality in the asymptotic analysis of a 2-d Landau-de Gennes model for liquid crystals, ESAIM Control Optim. Calc. Var., 21 (2015), 101-137. doi: 10.1051/cocv/2014025. Google Scholar

[4]

P. de Gennes and J. Prost, The Physics of Liquid Crystals, 2ndedition, Oxford University Press, Oxford, 1995.Google Scholar

[5]

G. Di FrattaJ. M. RobbinsV. Slastikov and A. Zarnescu, Half-integer point defects in the Q-tensor theory of nematic liquid crystals, Journal of Nonlinear Science, 26 (2016), 121-140. doi: 10.1007/s00332-015-9271-8. Google Scholar

[6]

J. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1990), 97-120. doi: 10.1007/BF00380413. Google Scholar

[7]

D. Golovaty and J. A. Montero, On minimizers of a Landau-de Gennes energy functional on planar domains, Arch. Ration. Mech. Anal., 213 (2014), 447-490. doi: 10.1007/s00205-014-0731-3. Google Scholar

[8]

S. Gustafson and I. M. Sigal, The stability of magnetic vortices, Commun. Math. Phys., 212 (2000), 257-275. doi: 10.1007/PL00005526. Google Scholar

[9]

R. HardtD. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., 105 (1986), 547-570. doi: 10.1007/BF01238933. Google Scholar

[10]

F. Hélein, Minima de la fonctionelle energie libre des cristaux liquides, C. R. Acad. Sci. Paris, 305 (1987), 565-568. Google Scholar

[11]

Y. HuY. Qu and P. Zhang, On the disclination lines of nematic liquid crystals, Communications in Computational Physics, 19 (2016), 354-379. doi: 10.4208/cicp.210115.180515a. Google Scholar

[12]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal., 46 (2014), 3390-3425. doi: 10.1137/130948598. Google Scholar

[13]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), 633-673. doi: 10.1007/s00205-014-0791-4. Google Scholar

[14]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Instability of point defects in a two-dimensional nematic liquid crystal model, Ann. I. H. Poincare-AN, 33 (2016), 1131-1152. doi: 10.1016/j.anihpc.2015.03.007. Google Scholar

[15]

R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Stability of point defects of degree $±1/2$ in a two-dimensional nematic liquid crystal model Calculus of Variations and Partial Differential Equations, 55 (2016), 33pp. doi: 10.1007/s00526-016-1051-2. Google Scholar

[16]

M. Kleman and O. D. Lavrentovich, Topological point defects in nematic liquid crystals, Philosophical Magazine, 86 (2006), 4117-4137. doi: 10.1080/14786430600593016. Google Scholar

[17]

X. Lamy, Some properties of the nematic radial hedgehog in the Landau-de Gennes theory, J. Math. Anal. Appl., 397 (2013), 586-594. doi: 10.1016/j.jmaa.2012.08.011. Google Scholar

[18]

E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau mimimizer in a disc, Math. Res. Lett., 1 (1994), 701-715. doi: 10.4310/MRL.1994.v1.n6.a7. Google Scholar

[19]

F.-H. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differ. Equ., 14 (2001), 289-330. Google Scholar

[20]

T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Commun. PDE, 22 (1997), 619-632. doi: 10.1080/03605309708821276. Google Scholar

[21]

A. Majumdar, The radial-hedgehog solution in Landau-de Gennes' theory for nematic liquid crystals, Euro. J. Appl. Math., 23 (2012), 61-97. doi: 10.1017/S0956792511000295. Google Scholar

[22]

A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227-280. doi: 10.1007/s00205-009-0249-2. Google Scholar

[23]

N. D. Mermin, The topological theory of defects in ordered media, Rev. Modern Phys., 51 (1979), 591-648. doi: 10.1103/RevModPhys.51.591. Google Scholar

[24]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073. Google Scholar

[25]

Manuel de PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's inequality, IMRN, 30 (2004), 1511-1527. doi: 10.1155/S1073792804133588. Google Scholar

[26]

R. Rosso and E. G. Virga, Metastable nematic hedgehogs, J. Phys. A, 29 (1996), 4247-4264. doi: 10.1088/0305-4470/29/14/041. Google Scholar

[27]

G. Toulouse and M. Kleman, Principles of a classification of defects in ordered media, Journal de Physique Lettres, 37 (1976), 149-151. doi: 10.1051/jphyslet:01976003706014900. Google Scholar

show all references

References:
[1]

P. BaumanJ. Park and D. Philips, Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., 205 (2012), 795-826. doi: 10.1007/s00205-012-0530-7. Google Scholar

[2]

P. Biscari and G. G. Peroli, A hierarchy of defects in biaxial nematics, Commun. Math. Phys, 186 (1997), 381-392. doi: 10.1007/s002200050113. Google Scholar

[3]

G. Canevari, Biaxiality in the asymptotic analysis of a 2-d Landau-de Gennes model for liquid crystals, ESAIM Control Optim. Calc. Var., 21 (2015), 101-137. doi: 10.1051/cocv/2014025. Google Scholar

[4]

P. de Gennes and J. Prost, The Physics of Liquid Crystals, 2ndedition, Oxford University Press, Oxford, 1995.Google Scholar

[5]

G. Di FrattaJ. M. RobbinsV. Slastikov and A. Zarnescu, Half-integer point defects in the Q-tensor theory of nematic liquid crystals, Journal of Nonlinear Science, 26 (2016), 121-140. doi: 10.1007/s00332-015-9271-8. Google Scholar

[6]

J. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1990), 97-120. doi: 10.1007/BF00380413. Google Scholar

[7]

D. Golovaty and J. A. Montero, On minimizers of a Landau-de Gennes energy functional on planar domains, Arch. Ration. Mech. Anal., 213 (2014), 447-490. doi: 10.1007/s00205-014-0731-3. Google Scholar

[8]

S. Gustafson and I. M. Sigal, The stability of magnetic vortices, Commun. Math. Phys., 212 (2000), 257-275. doi: 10.1007/PL00005526. Google Scholar

[9]

R. HardtD. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., 105 (1986), 547-570. doi: 10.1007/BF01238933. Google Scholar

[10]

F. Hélein, Minima de la fonctionelle energie libre des cristaux liquides, C. R. Acad. Sci. Paris, 305 (1987), 565-568. Google Scholar

[11]

Y. HuY. Qu and P. Zhang, On the disclination lines of nematic liquid crystals, Communications in Computational Physics, 19 (2016), 354-379. doi: 10.4208/cicp.210115.180515a. Google Scholar

[12]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal., 46 (2014), 3390-3425. doi: 10.1137/130948598. Google Scholar

[13]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), 633-673. doi: 10.1007/s00205-014-0791-4. Google Scholar

[14]

R. IgnatL. NguyenV. Slastikov and A. Zarnescu, Instability of point defects in a two-dimensional nematic liquid crystal model, Ann. I. H. Poincare-AN, 33 (2016), 1131-1152. doi: 10.1016/j.anihpc.2015.03.007. Google Scholar

[15]

R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Stability of point defects of degree $±1/2$ in a two-dimensional nematic liquid crystal model Calculus of Variations and Partial Differential Equations, 55 (2016), 33pp. doi: 10.1007/s00526-016-1051-2. Google Scholar

[16]

M. Kleman and O. D. Lavrentovich, Topological point defects in nematic liquid crystals, Philosophical Magazine, 86 (2006), 4117-4137. doi: 10.1080/14786430600593016. Google Scholar

[17]

X. Lamy, Some properties of the nematic radial hedgehog in the Landau-de Gennes theory, J. Math. Anal. Appl., 397 (2013), 586-594. doi: 10.1016/j.jmaa.2012.08.011. Google Scholar

[18]

E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau mimimizer in a disc, Math. Res. Lett., 1 (1994), 701-715. doi: 10.4310/MRL.1994.v1.n6.a7. Google Scholar

[19]

F.-H. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differ. Equ., 14 (2001), 289-330. Google Scholar

[20]

T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Commun. PDE, 22 (1997), 619-632. doi: 10.1080/03605309708821276. Google Scholar

[21]

A. Majumdar, The radial-hedgehog solution in Landau-de Gennes' theory for nematic liquid crystals, Euro. J. Appl. Math., 23 (2012), 61-97. doi: 10.1017/S0956792511000295. Google Scholar

[22]

A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227-280. doi: 10.1007/s00205-009-0249-2. Google Scholar

[23]

N. D. Mermin, The topological theory of defects in ordered media, Rev. Modern Phys., 51 (1979), 591-648. doi: 10.1103/RevModPhys.51.591. Google Scholar

[24]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073. Google Scholar

[25]

Manuel de PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's inequality, IMRN, 30 (2004), 1511-1527. doi: 10.1155/S1073792804133588. Google Scholar

[26]

R. Rosso and E. G. Virga, Metastable nematic hedgehogs, J. Phys. A, 29 (1996), 4247-4264. doi: 10.1088/0305-4470/29/14/041. Google Scholar

[27]

G. Toulouse and M. Kleman, Principles of a classification of defects in ordered media, Journal de Physique Lettres, 37 (1976), 149-151. doi: 10.1051/jphyslet:01976003706014900. Google Scholar

[1]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[2]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[3]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[4]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[5]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[6]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[7]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[8]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[9]

Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks & Heterogeneous Media, 2013, 8 (2) : 501-527. doi: 10.3934/nhm.2013.8.501

[10]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[11]

Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230

[12]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[13]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[14]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[15]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[16]

Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457

[17]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[18]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[19]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[20]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (37)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]