-
Previous Article
Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions
- DCDS Home
- This Issue
-
Next Article
Stability of half-degree point defect profiles for 2-D nematic liquid crystal
Perturbed fractional eigenvalue problems
1. | Department of Mathematics, University of Craiova, 200585 Craiova, Romania |
2. | "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania |
3. | Department of Mathematics and Computer Science, University Politehnica of Bucharest, 060042 Bucharest, Romania |
4. | "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania |
Let $Ω\subset\mathbb{R}^N$ ($N≥2$) be a bounded domain with Lipschitz boundary. For each $p∈(1,∞)$ and $s∈ (0,1)$ we denote by $(-Δ_p)^s$ the fractional $(s,p)$-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem $(-Δ_p)^s u=λ |u|^{p-2}u$, in $Ω$, $u=0$, in $\mathbb{R}^N\backslash Ω$, with a fractional $(t,q)$-Laplacian operator in the left-hand side of the equation, when $t∈(0,1)$ and $q∈(1,∞)$ are such that $s-N/p=t-N/q$. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter $λ$ is strictly larger than the first eigenvalue of the $(s,p)$-Laplacian.
References:
[1] |
M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp.
doi: 10.1007/s00030-016-0373-2. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1. Google Scholar |
[4] |
L. Del Pezzo and A. Quaas,
Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.
doi: 10.4171/ZAA/1572. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru,
On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25.
doi: 10.1016/j.na.2014.12.019. |
[7] |
R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty $, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp.
doi: 10.1007/s00030-016-0368-z. |
[8] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.
|
[9] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. |
[10] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var., 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[11] |
M. Mihăilescu,
An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708.
doi: 10.3934/cpaa.2011.10.701. |
[12] |
M. Mihăilescu and G. Moroşanu,
Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616.
doi: 10.4153/CMB-2016-025-2. |
show all references
References:
[1] |
M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp.
doi: 10.1007/s00030-016-0373-2. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1. Google Scholar |
[4] |
L. Del Pezzo and A. Quaas,
Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.
doi: 10.4171/ZAA/1572. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru,
On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25.
doi: 10.1016/j.na.2014.12.019. |
[7] |
R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty $, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp.
doi: 10.1007/s00030-016-0368-z. |
[8] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.
|
[9] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. |
[10] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var., 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[11] |
M. Mihăilescu,
An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708.
doi: 10.3934/cpaa.2011.10.701. |
[12] |
M. Mihăilescu and G. Moroşanu,
Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616.
doi: 10.4153/CMB-2016-025-2. |
[1] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[4] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[5] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[6] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[7] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[8] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[9] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[10] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[11] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[12] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[13] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[14] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[15] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[16] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[17] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[18] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[19] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]